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Abstract. This paper examines the ability of proportional hazard models to evaluate changes in land use 

through time. There are three specific objectives: (i) to review previous research on the complexity of 

urbanization and explain how the spatial hazard framework accommodates that complexity; (ii); to 

estimate a series of spatial hazard models characterizing land use in the 25 highest-growth core based 

statistical areas of the United States areas in 1990, 2000, and 2006; and (iii) to use the estimation results 

to track land use change region-by-region over the 16-year timeframe. Overall, the analysis reveals that 

the spatial hazard framework offers a highly effective means of describing land use change. Along the 

way, it also illustrates that the classic (Alonso 1964; Muth 1969; Mills 1972) model of urbanization 

continues to hold in an evermore-complex world — albeit, in an explicitly uncertain and inherently 
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1. Introduction 

In their classic paper The Urban Field, Friedmann and Miller (1965, page 314) suggested that the city 

should no longer be viewed as a “physical entity,” but, instead, as “a pattern of point locations and 

connecting flows of people, information, money, and commodities.” The work was prescient because it 

had identified a fundamental break in the American way of land use — a break brought on by the outright 

disintegration of clear demographic, socioeconomic, and spatial boundaries between urban, suburban, 

exurban, and rural settings.1 Over the nearly 50 years since, land use patterns have continued to evolve 

along this trajectory and essentially all urbanization, no matter how far-flung, is now anchored, one way 

or another, to one or more of the country’s 967 core based statistical areas (CBSAs). As shown in Figure 

1, the contemporary urban field — defined, following Friedmann and Miller (1965), as the area located 

within about a one-hour drive, or a 100-kilometer radius, of a CBSA — covers most of the continental 

United States. Not only is the nation personally urbanized, with around 83% and 10% of its population 

living in metropolitan and micropolitan areas, respectively, it is spatially urbanized, with most of its 

territory located within the sphere of one class of CBSA or the other. 

Because of its geographic scope, this still-emerging reality poses daunting problems for the study 

of land use and, even more, land use change. In particular, urbanization is exceptionally diverse and so 

too are the people and activities it accommodates, plus the various landscapes that it is situated on. 

Consider, for instance, the vast differences between the Northeast Corridor and Southern California 

conurbations, or between the environments of the Atlantic Southeast and the Pacific Northwest — they 

confound both the simplifying assumptions of theoretical models of land use and the practical limits of 

empirical methods of describing it: to wit, flat, featureless plains and perfectly smooth, negative 

exponential density gradients can be hard to justify theoretically (Brueckner 1982, 1987) and even harder 

to locate empirically (Kau and Lee 1976a, 1976b, 1977; Johnson and Kau 1980; Kau et al 1983). As a 

consequence, researchers have struggled through the years to characterize urbanization in a way that 

enables scientific analysis of similarities and dissimilarities from place-to-place and time period-to-time 

period. But, in spite of this effort, a definitive approach has yet to be discovered. As soon as one group 

(Burchfield et al 2006, most recently) seems to have come up with one, another (Irwin and Bockstael 

2007, in that case) delivers evidence to the contrary. In short, generalizing about the way of land use 

across a nation as large and variegated as the United States remains problematic. The challenge must be 

overcome, though, because social scientists and policymakers alike require the ability to compare and 

1 Others noticed this break, too, but interpreted it differently. For example, in another classic analysis, Vining and Strauss (1977)
argued that the ongoing process of population deconcentration was a complete reversal of past patterns of urbanization and that it
would eventually result in the population being more-or-less evenly distributed across the national landscape. 

2 



  

               

     

                

             

                

                   

               

               

             

               

                   

               

               

                

                

      

 

   
 

        
 

              

                

               

           

             

                   

                

        

               

              

   

                

             

                

contrast outcomes around the country in order to address them on evidentiary — and not strictly 

interpretive — grounds (Batty 2007). 

Toward that end, this paper examines the ability of proportional hazard models — a class of 

duration, or failure time, models originally developed for analyzing lifecycles (Heckman and Singer 

1984; Kiefer 1988; Odland and Ellis 1992; Lawless 2002; Waldorf 2003; Cleves et al 2004; Selvin 2008) 

— to evaluate changes in land use through time. It builds directly off a previous analysis (Carruthers et al 

2010) that establishes hazard models as a viable tool for studying spatial point patterns generated by 

urbanization. The present objectives are three: (i) to review previous research on the complexity of 

urbanization and explain how the spatial hazard framework accommodates that complexity; (ii); to 

estimate a series of spatial hazard models characterizing land use in the 25 highest-growth core based 

statistical areas of the United States areas in 1990, 2000, and 2006; and (iii) to use the estimation results 

to track land use change region-by-region over the 16-year timeframe. Overall, the analysis reveals that 

the spatial hazard framework offers an effective means of describing land use change and comparing 

diverse outcomes through time. Along the way, it also illustrates that the classic (Alonso 1964; Muth 

1969; Mills 1972) model of urbanization continues to hold in an evermore-complex world — albeit, in an 

explicitly uncertain and inherently chaotic manner. 

2. Background Discussion 

2.1 Complexity, Land Use, and the Urban Field 

Land use patterns are inherently complex: urbanization is, after all, composed of physical development — 

buildings, infrastructure, and other engineering — that has been shaped, large and small, by a literally 

countless number of individual actions taken by its builders, inhabitants, and planners (Jacobs 1961; Batty 

2007). Plus, different regions have different cultures, functions, geographic constraints, and natural 

resources and have likewise (and consequently) experienced different cycles of growth and decline 

through time (Perloff et al 1960). Even in a nation as young as the United States, land use has evolved 

over the course of hundreds of years and it has done so under continually shifting economic, 

environmental, demographic, social, and technological circumstances. As an outcome, urbanization is a 

veritable mash-up of different modes of land use with an internal structure that varies significantly from 

spot-to-spot and era-to-era — no two regions are the same, and individual regions exhibit a diverse 

patchwork of development. 

Adding to this complexity, the sphere of most regions has expanded so greatly over the past half-

century that long-standing distinctions between urban, suburban, exurban, and rural settings have lost 

much of their meaning (Frey 2004; Clark et al 2009). Friedmann and Miller (1965) recognized this early 
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on and responded by suggesting that urbanization should be reframed as a field — rather than material — 

concept, wherein the regional center exerts both centripetal and centrifugal forces. Specifically, they: (i) 

acknowledged that the net flow of migration from rural to urban parts of the country was unlikely to 

change; but (ii) at the same time, suggested that development patterns were taking on a new, far more 

expansive and elaborately structured, character.2 Only a few years later, this view was vindicated by the 

Census Bureau’s Current Population Reports, which revealed that, beginning in the late 1960s, internal 

migration had favored nonmetropolitan areas over metropolitan areas — in a dramatic turnaround, the 

former grew at the expense of the latter as households and, eventually, firms began relocating to outlying 

centers (Beale 1975; Gordon et al 1998). Though this trend, along with various explanations for it, has 

waxed and waned through the intervening years (see Frey 1993; Fuguitt and Beale 1996), it now seems 

clear that Friedmann and Miller’s (1965) field concept is of enduring value. The nonmetropolitan 

turnaround may not have been the “clean break” that some analysts (Vining and Strauss 1977) initially 

interpreted it to be, but its decisive transformation of land use patterns is indisputable (Gordon 1979). 

Most regions still retain a dominant center of gravity, but their development is more complex than ever 

before — partly because of the nature of urbanization itself, and partly because of how the urban field 

holds its far-flung, polycentric anatomy together. 

Yet, in spite of all this, the classic (Alonso 1964; Muth 1969; Mills 1972) economic model of 

urbanization continues to explain the general tendencies of land use, even within very large regions 

having an extended spatial hierarchy (Glaeser and Kahn 2004; Bogart 2006). In its simplest form, the 

model describes a perfectly smooth, monotonic rent gradient that declines with distance from its peak at 

the central business district of a circular region situated on a flat, featureless plane. At equilibrium, all 

households, which are assumed to be identical, attain the same level of utility — and, so, the rent gradient 

reflects the tradeoff between location and the cost of travel to and from downtown. A corresponding and 

equally smooth density gradient emerges as a result of households consuming progressively greater 

amounts of land, a normal good, toward the urban fringe where land is less expensive. The density 

gradient and, with it, urbanization come to an end once the rent gradient (minus the cost of construction) 

reaches zero and the highest and best use of land is no longer for development but, instead, for some 

natural resource oriented activity.3 In practice, the pattern is rarely, if ever, monocentric, but the same 

story readily generalizes to polycentric settings. The reason for this is that, under the conditions just 

described, firms, which are also assumed to be identical — similar to households, all firms attain the same 

level of profits (zero) — have an incentive to decentralize: since a household’s net income is its wage less 

the cost of commuting, a decentralizing firm can offer lower wages and still attract the labor that it 

2 See Lang (2003) for a recent exploration.
 
3 In more realistic vintage models of urbanization, the density gradient is jagged, not smooth, because of structures are torn down

and rebuilt over time according to their age and prevailing market conditions (Brueckner 2000).
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requires (DiPasquale and Wheaton 1996). As shown in Figure 2, the result is a polycentric bid rent 

gradient, r(d), that first falls with distance, d, from the central business district, then climbs as it 

approaches the outlying sub-center and, finally, falls again until it reaches the baseline rent, r(n), which 

reflects the value of land as a natural resource (for empirical examples, see Heikkila et al 1989; 

Richardson et al 1990). This kind of rent gradient emerges organically when the marginal costs of 

production and/or transportation are large relative to the population and physical size of the region in 

question (Odland 1978; Scott 1988). 

A more formal description of household behavior within this framework is as follows (see Fujita 

1987 for a complete exposition). Households have a common utility function, U(z,s), which contains a 

composite good, z, and urban space, or land, s. A household’s budgetary constraint is determined by its 

income, y, less the cost of travel, k, between its place of work and its location at radial distance d from its 

place of work: 

y – k(d) = z + r(d)s, (1) 

where k(d) increases continuously with d and r(d) is the rent per unit of land at d. The budgetary 

constraint, which sets limits on the consumption of land and all else, is equal to household income minus 

the cost of commuting. Given their particular — spatially explicit — budgetary constraint, households are 

faced with a utility maximization problem that involves choosing some combination of the composite 

good and land: 

maxU(z,s) z + r(d)s = y − k(d) . (2) 
d ,z,s 

The product of this decision is a household’s bid rent, ρ(d, u), which expresses the maximum price they 

are able per unit of land at distance d from their workplace while still maintaining a fixed level of utility, 

u: 

ρ (d, u) = max 
z,s 




 

y − k(d) − z 
s 

U(z,s) = u 



 

.
 (3)
 

Note that the reason bid rent decreases with d, as shown in Figure 2, is that location is exactly what 

determines net income: households are unwilling to pay the same price for an inferior spot located far 

from work as for a superior spot located close to work. In addition to land prices, bid rent yields a 

household’s optimal quantity of land consumption, or lot size, ς(d, u), which is what ultimately 

determines the character of land use. 

Figure 3 illustrates the connection between bid rent and optimal lot size. It displays the marginal 

rate of substitution, described by an indifference curve (the arc) for a fixed level of utility, u, between the 

composite good, z, and land, s, plus the budget constraints (the dashed lines) and corresponding 

consumption bundles (the dotted lines) for two households located at distances d1 and d2 from a common 
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place of work, where d1 < d2. Because the cost of travel to and from work, k(d), is lower at d1 than it is at 

d2, the net income of the household located at d1 is greater than the net income of the household at d2, or y 

– k(d1) > y – k(d2). The two budget constraints, which must be tangent to the indifference curve in order 

for each of their respective households to achieve utility level u, show that: (i) the bid rent, which is 

equivalent to the slope of the budget constraint, for the household located at d1 is greater than the bid rent 

for the household located at d2, or ρ(d1, u) > ρ(d2, u); and (ii) the optimal lot size for the household located 

at d1 is less than the optimal lot size for the household located at d2, or ς(d1, u) > ς(d2, u). In short, all else 

being equal, households located closer to their workplace pay a higher price per unit of land and, so, 

consume less of it — but still manage to attain the same level of utility, by substituting more of the 

composite good. 

The strength of this framework lies in its ability to distill the complexity of urbanization into a 

few simple relationships that explain the general tendencies of land use. In doing so, it also illuminates 

the explosion of the urban field that occurred in the wake of the nonmetropolitan turnaround: household 

income and commuting costs have, respectively, grown and declined dramatically in the years since 

World War II, and their combined impact first began materializing in the late 1960s (see Mieszkowski 

and Mills 1993). All else being equal, an increase in income, or, equivalently, a decrease in the cost of 

commuting, shifts the budget constraint shown in Figure 3 outward from the origin, enabling households 

to reach a higher level of utility through more land and/or other forms of consumption.4 Households 

continue to face the same tradeoffs as always but they increasingly have more income to allot and less 

aversion to commuting and, so, adjust their land consumption accordingly. But the weakness of this 

framework — for all its explanatory power — is that it is baldly deterministic, when actual land use 

patterns are not. Urbanization rarely unfolds monotonically, much less smoothly, but, instead, for all the 

reasons given above and more, appears to be a discontinuous patchwork that becomes progressively more 

complex as the scale of perspective expands. Even though land use does normally grow less dense with 

distance from various centers of gravity, it typically does so in a disjointed and seemingly chaotic manner. 

The problem with modeling land use patterns anymore, then, rests not so much with theoretically 

explaining why they are as they are, but with empirically characterizing how they are — while certain 

potentials prevail throughout the urban field, actual material conditions do not necessarily (Stewart 1947; 

Stewart and Warntz 1958) meaning that it is one thing to predict general tendencies and another to model 

specific outcomes. 

4 This is why sprawl, often a pejorative term, does not bother many economists (see, for example, Gordon and Richardson 1997). 
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2.2 Modeling Land Use — and its Complexity 

Efforts to scientifically evaluate changes in land use date at least to Clark’s (1951) discovery of the 

negative exponential density gradient: 

δ(di ) = δ0 ⋅e
−γ ⋅ d i +υi , (4) 

where δ(di ) is the density of development at radial distance di from a regional center or sub-center; δ0 is 

the population density there, where d = 0; −γ is the density gradient, which registers the rate of decrease 

in density per unit of distance; and υi is a random error term. After taking the natural log of both sides, 

equation (4) can easily be estimated via ordinary least squares and then used to trace out the overall 

pattern of urbanization. Clark (1951) did just that for more than 20 major metropolitan areas around the 

world, including seven in the United States,5 and compared results over time. The analysis revealed that, 

in most cases, both the peak and the slope of the regional density gradients had declined between 

intervening years — a finding that was ingeniously (especially for the time) attributed to falling 

commuting costs. As Batty and Kim (1992, page 1045) put it, “Clark’s (1951) paper was wide-ranging, 

idiosyncratic, and brilliant.” 

Ever since, the density gradient has been the workhorse of land use analysis: it is straightforward 

to implement and very flexible — it can be estimated in virtually any functional form, and expanded to 

include any number of explanatory variables besides distance (McDonald 1988). Plus, it engages 

naturally with economic models of land use, which, as shown in Figure 2, normally portray development 

in a one-dimensional setting. Just like the theory outlined above, the strength of the density gradient lies 

in both its simplicity and its ability to representatively describe the general tendencies of land use 

worldwide (Anas et al 1998). But, likewise, the weakness of the density gradient lies in the fact that it, 

too, is restrictively deterministic and glosses over the inherent complexity of urbanization. Indeed, studies 

have shown that the negative exponential density gradient in particular rests upon unrealistically strong 

assumptions (Brueckner 1982, 1987) and may grossly mischaracterize underlying development (Kau and 

Lee 1976a, 1976b, 1977; Johnson and Kau 1980; Kau et al 1983). As always, generality comes at a loss 

of specificity, so it’s only fair to ask: what is the alternative? Although faulting the density gradient is 

easy, modeling land use in a way that better reflects its complexity is not. Nevertheless, the fact is that 

contemporary urban centers project a far-reaching field that encompasses and influences — even 

organizes — various permutations of clustered, non-clustered, contiguous, non-contiguous, and linear 

development patterns (Clark et al 2009). A single transect may look more like Tobler’s (1969) spectrum 

of Interstate 40 than a well-behaved distance gradient, monotonic or not. And, even in the most general of 

5 These were: (i) Boston, MA; (ii) Chicago, IL; (iii) Cleveland, OH; (iv) Los Angeles, CA; (v) New York, NY; (vi) Philadelphia, 
PA; and (vii) St. Louis, MO. 
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terms, it is a rare case that exhibits anything like a uniform pattern all 360º around the regional center of 

gravity. What’s required, are empirical models of land use that somehow accommodate the gnawing 

uncertainty that attends complexity — and, more, that make that uncertainty a main aspect of the 

analytical framework (Batty 2007). 

One such approach is the “fractal geometry” method pioneered by Batty and Longley (1987, 

1994) and Frankhauser (1994). Fractals are chaotic shapes having, in the context of geographic 

phenomena, a dimension of between one and two — somewhere between a one-dimensional line and a 

two-dimensional polygon (Miller 2009) — that is a measure of space filling: the greater the fractal 

dimension, the greater the space filling, and the more compact the development pattern (see Peitgen et al 

2004). For example, Batty (2007) reports the following fractal dimensions for six regions: (i) 1.539 for 

Albany, NY; (ii) 1.793 for Buffalo, NY; (iii) 1.760 for Cleveland, OH; (iv) 1.670 for Columbus, OH; (v) 

1.673 for Pittsburgh, PA; and (vi) 1.370 for Syracuse, NY. By these measures, Buffalo is the most 

compact of the six and Syracuse is the least. The fractal dimension of urbanization (or any other object) is 

measured by estimating the power law: 

size ∝ scaleψ, (5) 

where size is the size of the area in question; scale is the measurement scale; and ψ is the fractal 

dimension. Although the relationship looks simple enough, estimating it is difficult because there are 

multiple definitions of the fractal dimension, not all of which agree, and multiple ways of calculating it. 

Fractals are especially useful for modeling urbanization because of their characteristic “self-similarity,” 

which arises in the form of repeated structures (Song and Knaap 2007 detail a number of these) across 

multiple spatial scales. Land use is generally shaped at a very local level but the regional outcome of 

individual actions, large and small, nonetheless ends up generating the same material pattern/s over-and-

over again — as in the event of sub-center formation (Batty 2001). In this way, the apparently chaotic 

behavior of the system as a whole gives rise to an organized, hierarchical structure. Fotheringham et al 

(1989) and Longley and Mesev (1997, 2000, 2002) explore the relationship between the fractal dimension 

and density of development and Torrens (2007, 2008) illustrates how the approach may be used to 

measure and track sprawl.6 

Another approach to modeling land use that places uncertainty at the center of the analytical 

framework is the “spatial hazard” method (Carruthers et al 2010). This turn on traditional (Boots and 

Getis 1988; Fotheringham et al 2000; Diggle 2003; Anselin and Rey 2010) point pattern analysis7 — 

6 One important insight of the material on fractal geometry with respect to land use change — and this squares with directly with
the vintage models of urban form (Brueckner 2000) invoked in the rational for using spatial hazard models to examine
urbanization in the first place (Carruthers et al 2010) — is that the built environment is durable, so very little change may happen
at the interior of regions after space filling norms have been achieved (Fotheringham et al 1989).
7 See Getis (1964, 1983) for land use applications. 
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developed by Odland and Ellis (1992) and formalized by Waldorf (2003) — involves adapting 

proportional hazard models, also called accelerated failure time models, to spatial settings. Hazard models 

are longitudinal models designed to estimate the conditional probability of a timeframe ending (Heckman 

and Singer 1984; Kiefer 1988; Lawless 2002; Cleves et al 2004; Selvin 2008). They come out of 

engineering, but have been applied to a variety of issues in regional science and other fields — for 

example, Irwin and Bockstael (2002) and An and Brown (2008) use them to study the timing of land use 

change. Like time, distance, D, is a nonnegative random variable that terminates at a particular point, d, 

conditional on the probability of having made it to that point in the first place. This characteristic results 

in there being a hazard function that describes the baseline rate at which distances separating spatial 

points terminate: 

Pr(D ∈ [d ,d + Δd] | D ≥ d)h(d) = lim ∈ (0,∞). (6) 
Δd →0 Δd 

A proportional hazard model is one that expands the hazard function so that the baseline hazard is scaled 

by a vector, X, of relevant exogenous factors: 

h(dX) = h0(d) ⋅ f(X). (7) 

This function can be parametric or not, but, either way, it gives the conditional probability that distances 

end at d, where the baseline probability, h0(d), is multiplied by some function of X that is constant over all 

d. Finally, a behavioral model of any given point generating process is achieved by choosing an 

appropriate statistical distribution for the baseline hazard — like the Weibull distribution, which is the 

distribution that is used here8 — plus a set of exogenous factors that influence the rate at which distances 

between points terminate: 

h(dX) = h0(d) ⋅ exp(X ⋅ Φ). (8) 

In this model, which must be estimated via maximum likelihood, the hazard function consists of two 

parts: (i) a Weibull-distributed baseline hazard, h0(d) = λ ⋅ dλ–1, wherein λ, a shape parameter derived 

from the data, expresses the rate at which the distances between spatial points terminate when X = 0; and 

(ii) an exponential scale parameter, Φ , which either accelerates or decelerates the baseline hazard, 

depending on how the various factors contained in the vector X combine to influence the termination rate. 

With this probabilistic worldview, spatial hazard models directly address the uncertainty of chaotically 

evolved patterns of land use. Variations on the spatial hazard approach have been applied to a number of 

geographic phenomena, including: the spacing of settlements (Odland and Ellis 1992); the separation 

between parents and their adult children (Rogerson et al 1993); the reach of market areas (Esparza and 

Krmenec 1994, 1996); the adoption of agricultural technology (Pellegrini and Reader 1996); and the 

8 The Weibull distribution is the most widely used distribution in survival analysis and it is well suited for examining distance
relationships, which typically decay rapidly across geographic space. Other commonly used distributions include the exponential,
log-logistic, and Gamma (Lawless 2002); for discussions of distance decay, see Tobler 1970 and Longley et al 2005. 
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spread of disease (Reader 2000). And, Kuethe et al (2009) have just recently pushed the approach further 

still by using copula functions to model urban form. 

In sum, the fractal geometry and spatial hazard approaches are complementary alternatives to 

analyzing land use via density gradients: both address the inherent complexity of development but, 

whereas fractals characterize its material condition, hazard functions characterize its field of potentials. 

The fractal method is an excellent means of evaluating land use change, but the hazard method — which 

holds great potential because it, like the density gradient, may be used to operationalize the very powerful 

behavioral theory outlined in the first half of this discussion — remains unproven. Is the approach viable? 

The following section tends to this question by estimating a series of spatial hazard models of 

urbanization and evaluating their ability to describe how the American way of land use has changed over 

the past two decades. 

3. Empirical Analysis 

3.1 Data and Econometric Specification 

The empirical analysis is focused on the 25 highest-growth — between 1990 and 2000 — core-based 

statistical areas (CBSAs) of the United States in 1990, 2000, and 2006. The regions are listed from largest 

to smallest in Table 1. In the eight cases that are composed of two or more divisions, the divisions 

themselves are used, so, counting all of these, the actual number of settings is 36.9 The units of analysis 

are census tracts, defined by their 2000 boundaries, and the data comes from four sources: (i) a 

nationwide count of housing units at the census block level in 2006;10 (ii) a Geolytics product that 

allocates select Census Summary File 1  (SF-1) variables from 1990 census block group boundaries to 

2000 boundaries; (iii) a second Geolytics product that allocates Census Summary File 3 (SF-3) from 1990 

tract boundaries to 2000 boundaries; and (iv) SF-3, from the 2000 census. Comparing localized census 

data through time is hard because block group and tract boundaries are regularly redrawn to accommodate 

changes in the geography of the population — but the two Geolytics products were used to overcome this 

problem by reconciling population estimates from 1990 into 2000 block group boundaries and, then, by 

reconciling other (SF-3) data from 1990 into 2000 tract boundaries. Finally, block group level housing 

unit counts from 2006 were multiplied by 2000 estimates of average household size to develop 2006 

9 Edison, NY, part of the New York, NY-NJ-PA CBSA is omitted.

10 Provided to the Department of Housing and Urban Development by the Census Bureau. The count represents the universe for

the American Community Survey, an annual survey of about three million households that is set to replace the so-called “long

form” of the decennial census, which will eventually yield census tract level data on an annual basis.
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population estimates that could be compared to the 1990 and 2000 estimates.11 Though intensive, these 

machinations were necessary in order to unify the geometry of the data across all three years. 

After laying this groundwork, a database of spatial point patterns and relevant attributes was 

assembled in a geographic information system (GIS) via a process detailed in Renner et al (2009). In a 

nutshell, the process involved five steps. In the first step, a base-map consisting of all census block groups 

in the continental United States — there are 208,643 — was created and their population estimates used 

to generate a population weighted center for each of the 66,157 tracts that make up the country in 1990, 

2000, and 2006. As opposed to the geometric center, this so-called “mean center” (see, for example, 

Barber 1988) is a point that marks where people were concentrated within the tracts, which can be quite 

expansive, at the three points in time. In the second step, similar routines were run to generate population 

weighted centers the 939 CBSAs and for each county subdivision in 2006. Here again, the points 

produced by this process mark the mean center of the regions and their various sub-centers; they were 

held constant (arbitrarily, at their 2006 position) in order to facilitate consistent analysis through time.12 In 

the third step, each tract-level point was assigned to a CBSA-level point, whether it “officially” belongs 

there or not, and to a sub-center-level point via a nearest neighbor routine. In the fourth step, the GIS was 

used to generate three sets of rays measuring the distances separating tract-level points from: (i) their 

regional center; (ii) their nearest sub-center; and (iii) their nearest neighbor. Finally, in the fifth step, 

relevant data (identified below) from SF-3 was assigned to the tract-level points; since 2006 is between 

census years, those points had to be matched with data from 2000. This attribute data was then stacked, 

forming an n × t panel for each CBSA involved in the analysis, where n refers to the number of tracts and 

t refers to the three years of observation. The results of this data assembly process are illustrated in Figure 

4, which contains maps of spatial point patterns in the four regions — Las Vegas, NV, Austin, TX, 

Raleigh, NC, and Phoenix, AZ — that experienced the highest rates of growth between 1990 and 2000. 

The rays visible in the maps connect nearest neighbor tracts to one another and measure the distances that 

are the object of this analysis. 

Returning to the modeling framework that was outlined above, economic theory yields the 

following two core premises: (i) the baseline hazard function for distance separating the spatial points that 

make up an overall pattern of urbanization is bound to exhibit positive spatial dependence; and (ii) the 

baseline hazard decelerates with distance from regional centers of gravity. In other words, the probability 

of the distance between tract-level points terminating increases with the distance that separates them and 

11 Housing unit counts from 2000 and 2006 were available for 2000 block groups, but not from 1990; population estimates from

1990 and 2000 were available for 2000 block groups, but not from 2006. So, the data was reconciled by converting 2006 housing

unit counts into population estimates — alternatively, 1990 population estimates could have been converted to (estimated)
 
housing unit counts.

12 As will become more apparent below, it is the movement of the tract-level points relative to other points is what is of interest.
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decreases with the distance that separates them from their regional center and their nearest sub-center (see 

Carruthers et al 2010). A Weibull distributed spatial hazard model of urbanization based on these 

expectations is as follows: 

h(dijXik) = h0(dij) ⋅ exp(τ2000, 2006 + φi⇒center ⋅ xi⇒center + φi⇒sub-center ⋅ xi⇒sub-center + Xik ⋅ Φk). (9) 

Here, h(dijXik) indicates that the baseline hazard, h0(d) = λ ⋅ dλ–1, for distance between nearest neighbor 

tracts i and j is scaled by, τ, a temporal fixed effect for 2000 and 2006, and by Xik, a vector of k 

independent variables, that includes xi⇒center, the distance from i to the regional center of gravity and xi⇒sub-

center, the distance from i to the nearest sub-center. The parameter Φk (including φi⇒center and φi⇒sub-center) 

registers the influence the vector of independent variables has on the rate at which distance between 

nearest neighbors terminates. The model itself, which is estimated as a panel region-by-region, or a total 

of 36 times, is probabilistic in nature so it is highly flexible and there is no requirement that transitions in 

land use play out smoothly, or even that they proceed consistently around the circumference of the region 

in question. 

The other explanatory variables (besides the two distance measures) contained in the vector Xik 

also flow directly from theory. Specifically, the economic model of urbanization points to three main 

variables: (i) land is a normal good, so household income, including wages and all other sources, 

positively affects the optimal lot size — meaning that income is expected to decelerate the hazard of the 

distance between points terminating; (ii) commuting costs are what determine the budgetary constraint, so 

time spent traveling to work is expected to either accelerate or decelerate the hazard of the distance 

between points terminating, depending on region-specific conditions; and (iii) as footnoted above, due to 

vintage effects, aged development, which is often of a different density than contemporary market 

conditions call for, is expected to influence the hazard of the distance between points terminating. In 

addition these three factors, population is included in order to control for the fact that, other things being 

equal, larger tracts will encompass a larger area. This variable is expected to decelerate the hazard of the 

distance between points terminating. Table 1 gives the specific definition and source of each variable; 

descriptive statistics are available upon request. 

3.2 Estimation Results 

The maximum likelihood estimates of the 36 individual spatial hazard models, which were generated 

CBSA-by-CBSA using the streg command in Stata, are listed in alphabetical order in Table 2. Note that 

none of the parameter estimates carry a negative sign, because they are “hazard ratios” that scale the 

baseline hazard — values less than one decelerate the baseline hazard and values greater than one 

accelerate it. The estimates are for the most part consistent with the estimates of previous research 

(Carruthers et al 2010), which: (i) focused on a somewhat different set of regions; (ii) dealt only with the 
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2006 time period; (iii) did not address sub-centers; and (iv) used block groups, not tracts, as the unit of 

analysis. As a precursor to evaluating the models’ ability to describe changes through time, the following 

paragraphs summarize the estimates. 

First, every region’s shape parameter, λ, is positive and statistically significant at well over a 99% 

confidence level, confirming the expectation that the probability of the distance between points 

terminating increases with the distance that separates them. Once again, a general finding is that, as a set, 

the shape parameters indicate that urbanization — however chaotically evolved and uncertain it may be 

— exhibits genuine, probabilistic order. Second, the parameter estimates on the two temporal fixed 

effects are almost all statistically significant and all positive, signaling that, if all else remained equal 

through time (which it did not) every region would have grown more compact. This aspect of the analysis 

is dealt with in detail below. Third, moving under the Φ heading, the parameter on distance from the 

regional center is negative and highly significant in every case, indicating that, as also expected, the 

probability of the distance between points terminating decreases with the distance that separates them 

from their regional center. Fourth, the parameter on distance from the nearest sub-center is nearly always 

negative and statistically significant, meaning that the probability of the distance between points 

terminating decreases with the distance that separates them from their nearest sub-center. The exceptions, 

where the opposite effect is registered, are very large, dense regions like New York City and Chicago. 

Fifth, the parameter on household income is almost uniformly negative and statistically significant — 

land is a normal good so, other things being equal, income decelerates the spatial hazard function. Sixth, 

as in previous research, the parameter on travel cost has a somewhat mixed effect: in those regions 

registering a positive sign, as most all do, it is associated with a more compact pattern of urbanization 

whereas, in those regions having a negative sign — New York City and Newark — it is associated with 

more sprawl. Seventh, the parameter on the age of housing units varies across regions: in about two-thirds 

of the cases where the variable is statistically significant, the influence is positive, suggesting that older 

development is generally denser than newer development. This finding is different from before, but it 

seems plausible that adding distance to the nearest sub-center to the mix alters the effect of the variable. 

Finally, the parameter on population, a control for the shear size of census tracts, is nearly always 

statistically significant and negative. 

Moving on to aggregate patterns of land use, spatial hazard models, as explained above, portray 

urbanization not as a material condition but, instead, as a field of potentials. To illustrate this, the 

estimation results just summarized are evaluated by tracing out survival functions — which are simply the 
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opposite, and more intuitive, way of expressing hazard functions13 — at relevant values of explanatory 

variables. Following Carruthers et al (2010), this is done by varying xi⇒center, distance from the regional 

center, and, on top of that, the two temporal fixed effects while holding the remainder of Xik constant at 

the mean Xik . To do this, radial distances, ξi⇒center, capturing ~5%, ~15%, ~25%, ~35%, ~45%, ~55%, 

~65%, ~75%, ~85%, and ~95% of each region’s total population were calculated year-by-year, and these 

specific values were used as values of xi⇒center. They were applied to the models by substituting relevant 

values into equation (10): 

h(dijXik) = ĥ0(dij) ⋅ exp( τ̂  2000, 2006 + φ̂ 
i⇒center ⋅ ξi⇒center + φ̂ 

i⇒sub-center ⋅ x i⇒sub-center + Xik ⋅ Φ̂k ). (11) 

Here, the hats denote estimated parameters; the bars denote mean values of the vector X , including 

distance from the nearest sub-center; and ξi⇒center is ∈  [di⇒center ~5%, …, ~95%], where the percentages 

refer to the distance from the CBSA’s population weighted center to capture approximately that 

proportion of the regions total population. To be clear, ξi⇒center was calculated for each year of the 

analysis, so the distances for the same region vary between years. Last, in the exercise, τ̂  was set to each 

of the three years being examined: (i) 2000 = 0 and 2006 = 0, indicating 1990; (ii) 2000 = 1 and 2006 = 0; 

and (iii) 2000 = 0 and 2006 = 1. 

The resulting survival curves, which were generated using the stcurve command in Stata, are 

shown region-by-region in alphabetical order in the left hand panes of the panels contained in Figure 5. 

These survival curves, which are cumulative probability functions, describe the conditional probability of 

the distance between nearest neighbor tracts extending past a particular distance at relevant locations 

within the regions. In the graphs, the x-axis, which registers distance between nearest neighbors, ranges 

from zero to 5,000 meters, and the y-axis, which registers the probability that dij extends, ranges from 

zero to one. Going from left to right, the 10 separate curves shown in each of the graphs correspond to the 

distance from the CBSA center, ξi⇒center, that captures ~5%, …, ~95% of the region’s population; the 

graphs are all consistent and, so, are directly comparable to one another. As a set, they show that 

(subjectively, at least) each of the 36 regions falls into one of four basic typologies (Carruthers et al 

2010): (i) high-density, compact — Chicago, IL, Los Angeles, CA, Nassau, NY, New York, NY and San 

Francisco, CA; (ii) low-density sprawl — Atlanta, GA, Austin, TX, Bethesda-Frederick, MD, Charlotte, 

NC, Ft. Worth, TX, Gary, IN, Nashville, TN, Orlando, FL, Phoenix, AZ, Raleigh, NC, Riverside, CA, 

and San Antonio, TX; (iii) high-density core, with sprawling outer areas — Dallas, TX, Denver, CO, 

Houston, TX, Las Vegas, NV, Miami, FL, Minneapolis-St. Paul, MN, Newark, NJ, Portland, OR, 

Sacramento, CA, and San Diego, CA; (iv) nearly spatially invariant, at various densities — Ft. 

13 The hazard function is expressed as H(dij) = Pr(D < dij) and the survival function is S(dij) = 1 – H(dij) = Pr(D ≥ dij). From these 
identities, it is easy to see that whereas the hazard function, H(dij), expresses the conditional probability of distance terminating, 
the survival function, S(dij), expresses the conditional probability of distance extending. 
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Lauderdale, FL, Lake-Kenosha, IL-WI, and Oakland, CA. Whatever the particular case, the graphs 

displayed in Figure 5 reveal how land use unfolds outward from the regional center of gravity and, 

because they express only probabilities, they portray urbanization not as a material condition but, rather, 

as a spectral field of potentials. 

3.3 Changes 

When the three sets of survival functions shown in the left-hand panes of the panels in Figure 5 were 

generated in Stata, the outfile option was used to capture the numeric data that describes them. This 

operation produced a total of 108 (36 × 3) new “.dta” files, containing 10 columns apiece, or one 

column for every curve shown in the graphs. Additional graphs registering changes from year-to-year 

were then generated by using the numeric data to difference the various survival functions for each 

region, and the results are shown in the right-hand panes of the panels in Figure 5: (i) 1990 – 2000; (ii) 

2000 – 2006; and 1990 – 2006. For example, the 1990 numeric data was subtracted from the 2000 

numeric data to obtain the 1990 – 2000 graphs. This procedure is an effective means of evaluating land 

use change within individual regions because the proportional hazard models were estimated as panels 

with temporal fixed effects and, so, the functions for individual regions have a single underlying shape 

parameter — what’s being compared, is how the estimated baseline hazard, ĥ0(dij), is affected by: (i) the 

fixed effects, τ̂  2000, 2006; (ii) the explanatory variables, X, which vary by year; and (iii) the corresponding 

scale parameter, Φ̂k , which is constant across all years. The confluence of these three factors is what 

accounts for the differences — some are easily visible and some are not — between the year-specific 

survival functions. 

To see just how and why this works, consider a simpler model than the one in equation (10) 

wherein the baseline hazard is influenced by a single generic fixed effect, θ: 

h(dX) = h0(d) ⋅ exp(θ). (12) 

When θ = 0 the model collapses to the baseline hazard function, h0(d) = λ ⋅ dλ–1, but when θ = 1 the 

baseline hazard is accelerated or decelerated, as the case may be, by the fixed effect, which is constant 

across all d. As long as the shape parameter, λ, is the same for both groups (θ = 0 and θ = 1) there is a 

strictly proportional relationship between the two circumstances, and the hypothesis test associated with 

the fixed effect is analogous to the classic difference in means t-test (Selvin 2008). The situation here is 

more complicated because both the fixed effects and explanatory variables, though not their estimated 

influence, Φ̂k , are in play — but that does not change the fact that the requirement of a single shape 

parameter for each region is met. 
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Back to the matter at hand, the graphs in the right-hand panes of Figure 5 illustrate how land use 

has changed in the 36 regions engaged in the analysis over the past two decades. As before, the x-axis, 

which ranges from zero to 5,000 meters, registers distance between nearest neighbors — but the y-axis, 

which ranges from –0.4 to 0.2, now registers the change in the probability that distance extends. Note that 

the changes need not be homogeneous across the 10 survival functions, and, indeed, as the background 

discussion suggests, it is reasonable to expect upfront that, in many cases, they are quite heterogeneous. 

Most urbanization is a mash-up of different eras and modes of development, so the patterns of change 

registered by the functions necessarily depend on the within-region location (i.e.: core vs. periphery) and 

nature (i.e.: compact vs. sprawl) of growth. Plus, as footnoted above, some locations may exhibit little or 

no change at all, if the have been build out according to space filling norms (see Fotheringham et al 

1989). When the change curves are positive, they imply a sprawling effect and, when they are negative, 

they imply a compacting effect — positive (negative) changes correspond to an increased (decreased) 

survival rate, or, stated the other way around, positive (negative) changes correspond to a decreased 

(increased) hazard rate. So, using the four regions displayed in Figure 4 as examples: (i) Austin, TX grew 

uniformly more dense between 1990 and 2000 and experienced little or no change between 2000 and 

2006, for a net effect consistent with what took place in the 1990s; (ii) parts of Las Vegas, NV grew more 

dense between 1990 and 2000 and other parts grew less dense between 2000 and 2006, for a net effect of 

some increased density and some increased sprawl — but in different parts of the region; (iii) Phoenix, 

AZ grew consistently more dense between 1990 and 2000 and consistently less dense, but not by quite as 

much, between 2000 and 2006, for a net effect of a moderate increase in density that may be eroded with 

the passage of additional time if the more recent trend persists; and (iv) and Raleigh, NC grew a lot more 

dense between 1990 and 2000 and a bit less dense between 2000 and 2006, for a net effect of increased 

density. Similar stories can be told about each of the 32 other regions in the figure.14 

Table 3 provides a more detailed taxonomy of the net (1990 – 2006) changes just described by 

listing some of the numeric data that went into generating them. Specifically, the table gives the changes 

in the probability of distance between nearest neighbor census tracts extending that were obtained by 

differencing each of the 10 survival curves. In order to conserve space and facilitate readability, the rows 

correspond to just a few of the distances separating tract mean centers — 500 meters, 1,000 meters, 2,000 

meters, 3,000 meters, 4,000 meters, and 5,000 meters between nearest neighbors — but the functions 

themselves are continuous, so they are based on much greater detail: the spreadsheets the data was taken 

from have about 100 rows corresponding to distances of zero to 5,000 meters in 50 meter increments. The 

14 Note that the exact scale over which changes in density are observed (or not) varies from region-to-region, according to
idiosyncratic differences in spatial patterns of development. The units of analysis are census tracts, which hold between 2,000
and 8,000 people (the average in 2000 was about 4,000 people), so, by definition, the area of the units is quite different both
within and among the regions considered in the analysis. 
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table shows that the differenced survival functions yield two lines of insight into how patterns of 

urbanization have changed through time: (i) by reading across through the columns, the table reveals 

where within the regions land use has changed; and (ii) by reading down through the rows, the table 

reveals at what spatial scales. 

Specific insights related to the four example regions are as follows. First, Austin experienced a 

sharp compacting effect staggered by distance from the regional center of gravity, where the probability 

of distance between nearest neighbors extending beyond certain lengths declined by about a third. The 

probability of extending beyond 1,000 meters fell at distances from the regional center of gravity 

capturing between ~5% and ~45% of the population; beyond 2,000 meters, at distances capturing between 

~25% and ~75%; beyond 3,000 meters, at distances capturing between ~55% and ~85%; beyond 4,000 

meters, at distances capturing between ~65% and ~85%; and beyond 5,000 meters, at a distance capturing 

~95%. (This pattern of infill is compelling because it seems consistent with some of the density changes 

reported by Torrens [2008, Figure 12] but it is worth pointing out that that analysis also found that 

Austin’s fractal dimension dropped slightly — from 1.230 to 1.213 — between 1990 and 2000, which is 

an indication of greater sprawl. It may therefore be a matter of where, in terms of center versus fringe, the 

development contributing to the change actually occurs — especially in growing regions, like Austin that 

are experiencing both space filling at the interior and expansion at the fringe.) Second, Las Vegas 

experienced an interesting mix of two different effects. The probability of distance between nearest 

neighbors extending beyond 1,000 meters fell by a small amount at the very center of the region (~5% of 

the population) but the probability of distance between nearest neighbors extending beyond 1,000 and 

2,000 meters grew by roughly 25% midway (~55% of the population) to its periphery. Third, Phoenix 

grew marginally denser from the center to middle (~5% – ~65% of the population) of the region; 

marginally less dense close to periphery (~75% – ~85% of the population); and less dense at the 

periphery, where the probability of distance between nearest neighbor tracts extending beyond 3,000, 

4,000, and 5,000 meters increased by about 10%. And, as pointed out, the 2000 – 2006 trend, which 

covers the duration of the recent housing boom in the United States, points decisively in the direction of 

more sprawl in Phoenix — whether or not the trend will continue now that the market and construction 

activity have wound down is an open question that is worth pursuing. Finally, Raleigh experienced a 

spatially staggered compacting effect very similar to what took place in Austin. The probability of the 

distance between nearest neighbor tracts extending beyond 1,000 and 2,000 meters fell by about a third at 

the region’s interior (~5% and ~45% of the population) and the same happened for probability of 

extending beyond 3,000 and 4,000 meters at its exterior (~55% and ~95% of the population). The table 

yields other insights too — but these are the main trends in land use change in the four regions. 
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4. Summary and Conclusion 

The three central objectives of this paper, now met, were: (i) to review previous research on the 

complexity of urbanization and explain how the spatial hazard framework accommodates that complexity; 

(ii) to estimate a series of spatial hazard models characterizing land use in the 25 highest-growth core 

based statistical areas of the United States areas in 1990, 2000, and 2006; and (iii) to use the estimation 

results to track land use change region-by-region over the 16-year timeframe. All that remains are a few 

closing comments and directions for future research. 

To begin, the evidence presented in the empirical analysis of this paper squares nicely with the 

both the classic (Alonso 1964; Muth 1969; Mills 1972) theoretical model of urbanization and newer 

empirical approaches that place uncertainty at the center of the analytical framework (Batty 2007; Torrens 

2007, 2008; Carruthers et al 2010). As Friedmann and Miller (1965) noticed some time ago, the American 

way of land use changed dramatically over the course the 20th century and it continues to change no less 

dramatically in the 21st century. And, as people continue to grow wealthier and transport costs continue to 

fall, especially in the post-industrial economy, the evolutionary process that took hold with the 

nonmetropolitan turnaround (Beale 1975) is only going to accelerate. Contemporary urbanization is 

composed of layer-upon-layer of development, varies greatly by regional culture and circumstance, has a 

far-flung, polycentric anatomy, and is the outcome of a chaotic system of innumerable actions taken by its 

denizens. Yet, in spite of all of this, all of the regions addressed by the analysis, seen through the lens of 

spatial hazard models, exhibit striking order and a consistent overall pattern of development, no matter 

their own peculiarities. Thinking of urbanization as a field, rather than material, concept and treating it 

that way empirically is helpful because it allows for the fact that, while certain potentials prevail 

throughout the field, actual material conditions do not necessarily. This view also enables traditional 

theory to hold in an evermore-complex world, but in an explicitly uncertain and chaotic — though 

definitely not random — manner. 

The spatial hazard approach addresses all of this and is a means of scientifically analyzing the 

similarities and dissimilarities of development from place-to-place and time period-to-time period. In 

particular, the models are a highly flexible means of: (i) operationalizing a traditional method of spatial 

analysis with a long and distinguished history — namely, point pattern analysis (Boots and Getis 1988; 

Diggle 2003) — via very powerful behavioral models of urbanization; (ii) generalizing about the way of 

land use across a diversity of settings; and (iii) standardizing development patterns in the face of their 

inherent complexity. As such, the approach is viable for comparing and contrasting dynamic outcomes 

across very elaborate urban systems. 
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Future research should focus on several key areas. First, both this and previous research 

(Carruthers et al 2010) have applied spatial hazard models to very large metropolitan settimgs — so it 

would be interesting to apply the approach to smaller, micropolitan and rural settings. In principle, these 

places should exhibit the same general tendencies of land use but they merit investigation, particularly 

given the extreme growth (and decline) pressures that many face. Second, while spatial hazard models 

clearly line up well with traditional theories of land use, other, less tested, frameworks addressing the 

spatial distribution of activity may also be worth evaluating via the approach. For example, the “new 

economic geography” (see Fujita et al 1999) has gained great currency in economics, geography, regional 

science, and elsewhere — but has so far been subjected to only a limited amount of empirical evaluation 

(Head and Mayer 2004). Whether or not spatial hazard models have anything to contribute on this front is 

unclear at the present, but they very well may. Third, the approach has so far been applied region-by-

region and not to any greater system of urbanization, like the Northeast Corridor and/or Southern 

California conurbations, but there is, in principle, no reason that it could not. In fact, the success realized 

here in comparing changes through time suggests that, if estimated as part of an urban system, land use 

patterns of the system’s various components could be compared in a very direct way. Last, most progress 

in applying spatial hazard models to urbanization thus far has been made by using census block groups or 

census tracts as the units of analysis. While these are typically small, neighborhood-sized units it would 

be even better to get down to the level of individual structures, as Kuethe et al 2009 do in their analysis of 

housing sales, including both residential and commercial buildings. Just as attributes from the census are 

used to explain the process generating neighborhood level points, micro attribute data, if available, could 

be used to explore the very fabric of development. Each of these directions and more would be an 

excellent extension of research involving spatial hazard models. 
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Table 1. 25 Highest Growth CBSAs, 1990 – 2000 
Abbreviation Pop. 1990 Pop. 2000 Δ % Δ Lat. Long 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 
9. 

10. 
11. 
12. 

13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 

New York-Northern New Jersey-Long Island, NY-NJ-PA 
Nassau-Suffolk, NY 
New York-Wayne-White Plains, NY-NJ 
Newark-Union, NJ-PA 

Los Angeles-Long Beach-Santa Ana, CA 
Los Angeles-Long Beach-Glendale, CA 
Santa Ana-Anaheim-Irvine, CA 

Chicago-Naperville-Joliet, IL-IN-WI 
Chicago-Naperville-Joliet, IL 
Gary, IN 
Lake County-Kenosha County, IL-WI 

Dallas-Fort Worth-Arlington, TX 
Dallas-Plano-Irving, TX 
Fort Worth-Arlington, TX 

Miami-Fort Lauderdale-Pompano Beach, FL 
Fort Lauderdale-Pompano Beach-Deerfield Beach, FL 
Miami-Miami Beach-Kendall, FL 
West Palm Beach-Boca Raton-Boynton Beach, FL 

Washington-Arlington-Alexandria, DC-VA-MD-WV 
Bethesda-Frederick-Gaithersburg, MD 
Washington-Arlington-Alexandria, DC-VA-MD-WV 

Houston-Baytown-Sugar Land, TX 
Atlanta-Sandy Springs-Marietta, GA 
San Francisco-Oakland-Fremont, CA 

Oakland-Fremont-Hayward, CA 
San Francisco-San Mateo-Redwood City, CA 

Riverside-San Bernardino-Ontario, CA 
Phoenix-Mesa-Scottsdale, AZ 
Seattle-Tacoma-Bellevue, WA 

Seattle-Bellevue-Everett, WA 
Tacoma, WA 

Minneapolis-St Paul-Bloomington, MN-WI 
San Diego-Carlsbad-San Marcos, CA 
Tampa-St Petersburg-Clearwater, FL 
Denver-Aurora, CO 
Portland-Vancouver-Beaverton, OR-WA 
Sacramento--Arden-Arcade--Roseville, CA 
San Antonio, TX 
Orlando, FL 
Las Vegas-Paradise, NV 
Charlotte-Gastonia-Concord, NC-SC 
Nashville-Davidson-Murfreesboro, TN 
Austin-Round Rock, TX 
Raleigh-Cary, NC 

Nassau, NY 
New York, NY 
Newark, NJ 

Los Angeles, CA 
Santa Ana, CA 

Chicago, IL 
Gary, IN 
Lake-Kenosha, IL-WI 

Dallas, TX 
Ft. Worth, TX 

Ft. Lauderdale, FL 
Miami, FL 
West Palm Beach, FL 

Bethesda-Frederick, MD 
Washington, DC 
Houston, TX 
Atlanta, GA 

Oakland, CA 
San Francisco, CA 
Riverside, CA 
Phoenix, AZ 

Seattle, WA 
Tacoma, WA 
Minneapolis-St. Paul, MN 
San Diego, CA 
Tampa, FL 
Denver, CO 
Portland, OR 
Sacramento, CA 
San Antonio, TX 
Orlando, FL 
Las Vegas, NV 
Charlotte, NC 
Nashville, TN 
Austin, TX 
Raleigh, NC 

2,609,212 
10,378,385 

1,960,063 

8,863,164 
2,410,556 

6,894,440 
643,037 
644,599 

2,622,562 
1,366,732 

1,255,488 
1,937,094 

863,518 

907,235 
3,215,679 
3,767,335 
3,069,425 

2,082,914 
1,603,678 
2,588,793 
2,238,480 

1,972,961 
586,203 

2,538,834 
2,498,016 
2,067,959 
1,666,883 
1,523,741 
1,481,102 
1,407,745 
1,224,852 

741,459 
1,024,643 
1,048,216 

846,227 
541,100 

2,753,913 
11,296,377 
2,098,843 

9,519,338 
2,846,289 

7,628,412 
675,971 
793,933 

3,451,226 
1,710,318 

1,623,018 
2,253,362 
1,131,184 

1,068,618 
3,727,565 
4,715,407 
4,247,981 

2,392,557 
1,731,183 
3,254,821 
3,251,876 

2,343,058 
700,820 

2,968,806 
2,813,833 
2,395,997 
2,179,240 
1,927,881 
1,796,857 
1,711,703 
1,644,561 
1,375,765 
1,330,448 
1,311,789 
1,249,763 

797,071 

144,701 
917,992 
138,780 

656,174 
435,733 

733,972 
32,934 

149,334 

828,664 
343,586 

367,530 
316,268 
267,666 

161,383 
511,886 
948,072 
1,178,556 

309,643 
127,505 
666,028 
1,013,396 

370,097 
114,617 
429,972 
315,817 
328,038 
512,357 
404,140 
315,755 
303,958 
419,709 
634,306 
305,805 
263,573 
403,536 
255,971 

5.5 
8.8 
7.1 

7.4 
18.1 

10.6 
5.1 

23.2 

31.6 
25.1 

29.3 
16.3 
31.0 

17.8 
15.9 
25.2 
38.4 

14.9 
8.0 

25.7 
45.3 

18.8 
19.6 
16.9 
12.6 
15.9 
30.7 
26.5 
21.3 
21.6 
34.3 
85.5 
29.8 
25.1 
47.7 
47.3 

40.78 
40.79 
40.80 

34.06 
33.73 

41.86 
41.50 
42.37 

32.89 
32.75 

26.14 
25.79 
26.60 

39.14 
38.83 
29.77 
33.81 

37.80 
37.72 
34.01 
33.48 

47.65 
47.19 
44.99 
32.88 
28.02 
39.70 
45.51 
38.65 
29.49 
28.58 
36.14 
35.19 
36.14 
30.31 
35.78 

–73.31 
–73.94 
–74.40 

–118.26 
–117.86 

–87.87 
–87.33 
–87.96 

–96.77 
–97.28 

–80.21 
–80.28 
–80.13 

–77.17 
–77.16 
–95.39 
–84.36 

–122.09 
–122.42 
–117.14 
–111.98 

–122.23 
–122.42 

–93.25 
–117.12 

–82.57 
–104.98 
–122.67 
–121.28 

–98.49 
–81.43 

–115.14 
–80.84 
–86.68 
–97.74 
–78.60 
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Table 2. Data Definitions and Sources 
Definition Source 

Distance from Nearest Distance from population weighted center to the population weighted Authors’ calculations, U.S. Census and Geolytics Neighbor	 center of the nearest tract, 1990, 2000, 2006 
Distance from population weighted center to the population weightedDistance from CBSA	 Authors’ calculations, U.S. Census and Geolytics center of the nearest CBSA, 1990, 2000, 2006 

Distance from Sub-Center Distance from population weighted center to the population weighted Authors’ calculations, U.S. Census and Geolytics center of the nearest county subdivision, 1990, 2000, 2006 
Household Income Median household income, 1989, 1999 U.S. Census Bureau, and Geolytics — SF-3, Table P68 

Author’s calculations, from U.S. Census Bureau and Geolytics — SF-3, Travel Cost	 Average duration of journey to work, 1990, 2000 Tables P31 and P33 
Age of Housing Units Median age of housing units, 1990, 2000 U.S. Census Bureau and Geolytics — SF-3, Table H35 
Population Estimated population, 1990, 2000, 2006 U.S. Census Bureau and Geolytics 
Note: All data is at the level of census tracts. 
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Table 3. Estimated Spatial Hazard Functions — Distance from Nearest Neighbor 
τ φ 

Dist. from Dist. from Household Travel Age of
λ 2000 2006 CBSA Center Sub-center Income Cost Housing Units Population 
Est. Est. Est. Est. Est. Est. Est. Est. Est. LL n× t 

1. Atlanta, GA 3.26 ★★★ 1.25 ★★★ 1.31 ★★★ 0.999900 ★★★ 0.999882 ★★★ 0.999992 ★★★ 0.67 n/s 5.63 ★★★ 0.999915 ★★★ –548.51 1,684 
(67.80) (3.33) (4.03) (33.51) (8.35) (5.40) (1.57) (6.86) (8.45) 

2. Austin, TX 2.19 ★★★ 2.11 ★★★ 2.37 ★★★ 0.999932 ★★★ 0.999867 ★★★ 0.999982 ★★★ 37.33 ★★★ 0.04 ★★★ 0.999902 n/s –612.67 809 
(51.98) (3.94) (3.60) (22.26) (10.90) (8.62) (8.05) (3.21) (1.60) 

3. Bethesda-Frederick, MD 2.09 ★★★ 1.87 ★★★ 2.05 ★★★ 0.999958 ★★★ 0.999844 ★★★ 0.999978 ★★★ 10.97 ★★★ 0.0008 ★★★ 0.999848 ★★★ –600.95 750 
(26.53) (6.34) (7.12) (9.88) (4.29) (11.82) (5.08) (10.89) (8.39) 

4. Charlotte, NC 3.25 ★★★ 1.26 ★ 1.54 ★★★ 0.999818 ★★★ 1.000089 ★★★ 0.999999 n/s 0.23 ★★★ 9.37 ★★★ 0.999876 ★★★ –188.81 518 
(35.24) (1.91) (3.35) (14.81) (3.41) (0.40) (3.01) (3.73) (6.21) 

5. Chicago, IL 2.74 ★★★ 1.57 ★★★ 1.66 ★★★ 0.999933 ★★★ 1.000201 ★★★ 0.999977 ★★★ 0.95 n/s 5.97 ★★★ 0.999865 ★★★ –2115.31 4,462 
(98.10) (11.35) (12.59) (39.19) (26.24) (21.10) (0.38) (24.21) (19.38) 

6. Dallas, TX 2.63 ★★★ 1.26 ★★★ 1.29 ★★★ 0.999887 ★★★ 0.999981 n/s 0.999988 ★★★ 1.13 n/s 2.58 ★★★ 0.999967 ★★★ –948.33 1,822 
(58.62) (3.76) (4.02) (30.87) (1.47) (10.28) (0.50) (3.45) (3.30) 

7. Denver, CO 2.60 ★★★ 1.14 ★ 1.11 n/s 0.999861 ★★★ 0.999929 ★★★ 0.999996 ★★★ 3.19 ★★★ 0.30 ★★★ 1.000028 ★ –791.19 1,484 
(52.20) (1.84) (1.39) (28.59) (4.82) (3.22) (4.89) (6.59) (1.91) 

8. Ft. Lauderdale, FL 4.06 ★★★ 1.48 ★★★ 1.51 ★★★ 0.999984 ★★★ 0.999814 ★★★ 0.999984 ★★★ 14.12 ★★★ 104.05 ★★★ 0.999950 ★★★ –110.79 936 
(58.70) (4.37) (4.44) (2.76) (5.66) (8.61) (9.44) (3.26) (3.66) 

9. Ft. Worth, TX 2.62 ★★★ 1.10 n/s 1.10 n/s 0.999899 ★★★ 0.999980 n/s 1.000002 n/s 43.32 ★★★ 0.33 ★★★ 0.999989 n/s –595.17 1,080 
(43.63) (1.18) (1.14) (20.93) (1.28) (0.89) (10.54) (2.93) (0.66) 

10. Gary, IN 1.57 ★★★ 1.54 n/s 1.57 ★★★ 0.999966 ★★★ 0.999868 ★★★ 0.999974 ★★★ 4.21 ★★★ 3.54 ★★★ 0.999959 ★★ –740.26 726 
(17.36) (4.30) (4.54) (7.92) (4.82) (7.16) (3.64) (3.75) (2.02) 

11. Houston, TX 2.41 ★★★ 1.15 ★★★ 1.17 ★★★ 0.999930 ★★★ 0.999961 ★★★ 0.999997 ★★★ 7.05 ★★★ 0.73 n/s 0.999968 ★★★ –1607.37 2,468 
(58.64) (2.73) (2.92) (35.78) (4.75) (2.79) (11.52) (1.25) (4.48) 

12. Lake-Kenosha, IL-WI 2.26 ★★★ 1.09 n/s 1.09 n/s 0.999982 ★★★ 0.999796 ★★★ 0.999998 n/s 11.50 ★★★ 0.40 ★ 1.000002 n/s –476.83 704 
(30.38) (0.80) (0.78) (4.38) (4.13) (0.97) (5.60) (1.95) (0.09)

Notes: LL is the log-likelihood; n× t is the number of observations in the panel; in the event that an observation/s was dropped in the estimation process, n× t is not symmetric; 
values in () are z-statistics; all hypothesis tests are two-tailed; ★★★ denotes significant at 99%; ★★ denotes significant at 95%; ★ denotes significant at 90%; and n/s denotes not 
significant. 
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Table 3. Estimated Spatial Hazard Functions — Distance from Nearest Neighbor (cont…) 
τ φ 

Dist. from Dist. from Household Travel Age of
λ 2000 2006 CBSA Center Sub-center Income Cost Housing Units Population 
Est. Est. Est. Est. Est. Est. Est. Est. Est. LL n× t 

13. Las Vegas, NV 2.35 ★★★ 1.00 n/s 1.01 n/s 0.999862 ★★★ 0.999931 ★★★ 1.000003 n/s 1.12 n/s 0.0001 ★★★ 0.999956 ★★★ –633.61 1,005 
(38.13) (0.02) (0.11) (20.25) (5.16) (1.54) (0.57) (3.14) (3.70) 

14. Los Angeles, CA 2.79 ★★★ 1.23 ★★★ 1.25 ★★★ 0.999927 ★★★ 0.999951 ★★★ 0.999979 ★★★ 4.62 ★★★ 0.25 ★★★ 0.999993 n/s –2529.32 5,497 
(107.44) (6.15) (6.59) (48.73) (9.70) (28.11) (11.83) (12.04) (1.04) 

15. Miami, FL 2.57 ★★★ 1.15 n/s 1.10 n/s 0.999909 ★★★ 0.999743 ★★★ 0.999986 ★★★ 1.72 ★★★ 13.75 ★★★ 1.000043 ★★★ –558.18 1,041 
(43.06) (1.74) n/s (1.19) (22.24) (8.90) (7.71) (2.36) (5.12) (4.52) 

16. Minneapolis-St. Paul, MN 2.99 ★★★ 1.54 ★★★ 1.56 ★★★ 0.999896 ★★★ 1.000035 ★★ 0.999983 ★★★ 6.97 ★★★ 2.29 ★★★ 0.999908 ★★★ –856.01 2,096 
(69.90) (7.24) (7.40) (37.04) (2.00) (11.82) (8.64) (7.36) (6.58) 

17. Nashville, TN 2.80 ★★★ 1.84 ★★★ 1.84 ★★★ 0.999915 ★★★ 0.999970 ★★ 0.999974 ★★★163.95 ★★★ 1.79 n/s 0.999973 n/s –333.81 667 
(35.81) (5.96) (5.90) (16.83) (2.16) (9.49) (13.10) (1.26) (1.28) 

18. Nassau, NY 2.79 ★★★ 1.32 ★★★ 1.30 ★★★ 0.999944 ★★★ 0.999644 ★★★ 0.999990 ★★★ 7.08 ★★★ 2.30 ★★★ 0.999976 n/s –673.78 1,374 
(51.98) (3.94) (3.60) (22.26) (10.90) (8.62) (8.05) (3.21) (1.60) 
(50.27) (7.95) (7.93) (25.34) (0.20) (12.59) (7.96) (1.35) (0.63)

19. New York, NY 2.21 ★★★ 1.23 ★★★ 1.22 ★★★ 0.999916 ★★★ 1.000031 ★★★ 0.999992 ★★★ 0.35 ★★★ 6.67 ★★★ 0.999991 ★★ –5578.95 8,745 
(114.69) (7.40) (7.30) (48.90) (5.49) (16.37) (14.55) (36.25) (2.21) 

20. Newark, NJ 2.33 ★★★ 2.34 ★★★ 2.45 ★★★ 0.999921 ★★★ 0.999994 n/s 0.999962 ★★★ 0.54 ★★★ 8.35 ★★★ 0.999900 ★★★ –1103.58 1,732 
(50.79) (13.39) (13.98) (26.83) (0.31) (30.00) (2.74) (13.16) (7.51) 

21. Oakland, CA 3.14 ★★★ 2.50 ★★★ 2.58 ★★★ 0.999975 ★★★ 0.999759 ★★★ 0.999965 ★★★ 0.68 n/s 14.69 ★★★ 0.999916 ★★★ –417.02 1,194 
(55.72) (11.77) (12.03) (6.29) (9.65) (23.19) (1.20) (15.67) (6.73) 

22. Orlando, FL 2.50 ★★★ 1.34 ★★★ 1.38 ★★★ 0.999889 ★★★ 0.999915 ★★★ 0.999990 ★★★ 3.78 ★★★ 10.42 ★★★ 0.999943 ★★★ –538.66 909 
(37.69) (3.30) (3.39) (21.27) (3.47) (4.46) (4.43) (3.61) (4.69) 

23. Phoenix, AZ 2.11 ★★★ 1.10 n/s 1.17 ★★★ 0.999923 ★★★ 0.999960 ★★★ 0.999996 ★★★ 0.87 n/s 1.66 n/s 0.999969 ★★★ –1464.69 2,061 
(50.18) (1.63) (2.63) (34.94) (5.62) (4.90) (0.91) (1.17) (4.33) 

24. Portland, OR 2.77 ★★★ 1.96 ★★★ 1.98 ★★★ 0.999863 ★★★ 0.999997 n/s 0.999971 ★★★ 19.47 ★★★ 0.79 n/s 1.000010 n/s –564.54 1,192 
(50.27) (7.95) (7.93) (25.34) (0.20) (12.59) (7.96) (1.35) (0.63)

Notes: LL is the log-likelihood; n× t is the number of observations in the panel; in the event that an observation/s was dropped in the estimation process, n× t is not symmetric; 
values in () are z-statistics; all hypothesis tests are two-tailed; ★★★ denotes significant at 99%; ★★ denotes significant at 95%; ★ denotes significant at 90%; and n/s denotes not 
significant. 
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Table 3. Estimated Spatial Hazard Functions — Distance from Nearest Neighbor 
τ φ 

Dist. from Dist. from Household Travel Age of
λ 2000 2006 CBSA Center Sub-center Income Cost Housing UnitsPopulation 
Est. Est. Est. Est. Est. Est. Est. Est. Est. LL n× t 

25. Raleigh, NC 3.30 ★★★ 2.22 ★★★ 2.60 ★★★ 0.999888 ★★★ 0.999750 ★★★ 1.000007 ★★★880.66 ★★★ 0.84 n/s 0.999872 ★★★ –112.77 333 
(29.24) (4.95) (5.81) (9.44) (4.99) (2.01) (10.65) (0.28) (6.17) 

26. Riverside, CA 1.65 ★★★ 1.20 ★★★ 1.33 ★★★ 0.999978 ★★★ 0.999842 ★★★ 0.999995 ★★★ 3.66 ★★★ 0.06 ★★★ 0.999920 ★★★ –1382.17 1,467 
(29.12) (2.77) (4.15) (16.77) (12.37) (2.41) (6.64) (5.28) (8.65) 

27. Sacramento, CA 2.02 ★★★ 1.48 ★★★ 1.40 ★★★ 0.999950 ★★★ 0.999839 ★★★ 0.999981 ★★★ 56.72 ★★★ 0.32 ★★★ 0.999997 n/s –881.43 1,109 
(33.12) (4.95) (4.26) (16.87) (8.46) (9.09) (14.18) (3.29) (0.17) 

28. San Antonio, TX 2.53 ★★★ 1.43 ★★★ 1.39 ★★★ 0.999897 ★★★ 0.999971 ★★ 0.999980 ★★★ 14.04 ★★★ 0.63 n/s 0.999984 n/s –585.08 1,001 
(40.65) (4.27) (3.90) (26.10) (2.21) (8.31) (9.69) (1.57) (1.22) 

29. San Diego, CA 1.81 ★★★ 1.34 ★★★ 1.36 ★★★ 0.999931 ★★★ 0.999922 ★★★ 0.999983 ★★★ 1.68 ★★★ 2.44 ★★★ 0.999980 ★★ –1576.51 1,815 
(37.09) (4.81) (5.03) (30.29) (7.87) (13.27) (3.00) (4.04) (2.14) 

30. San Francisco, CA 2.07 ★★★ 1.48 ★★★ 1.49 ★★★ 0.999919 ★★★ 0.999960 ★★ 0.999990 ★★★ 4.14 ★★★ 5.04 ★★★ 1.000024 n/s –820.77 1,165 
(37.91) (4.78) (4.84) (19.94) (2.05) (6.46) (5.90) (12.04) (1.63) 

31. Santa Ana, CA 2.63 ★★★ 1.28 ★★★ 1.20 ★★★ 0.999951 ★★★ 0.999809 ★★★ 0.999989 ★★★ 0.81 n/s 0.04 ★★★ 1.000016 ★ –1268.49 2,507 
(69.88) (4.64) (3.40) (23.88) (13.26) (12.94) (1.67) (11.02) (1.94) 

32. Seattle, WA 2.76 ★★★ 1.93 ★★★ 1.92 ★★★ 0.999913 ★★★ 0.999887 ★★★ 0.999973 ★★★ 16.56 ★★★ 3.33 ★★★ 1.000000 n/s –597.71 1,209 
(48.66) (8.07) (7.71) (19.42) (7.54) (12.94) (8.57) (6.31) (0.02) 

33. Tacoma, WA 2.29 ★★★ 1.08 n/s 1.12 n/s 0.999914 ★★★ 0.999867 ★★★ 1.000000 n/s 2.98 ★★★ 0.58 n/s 0.999961 ★ –443.79 654 
(29.05) (0.73) (1.01) (14.65) (4.74) (0.08) (3.17) (1.41) (1.91) 

34. Tampa, FL 2.97 ★★★ 1.41 ★★★ 1.40 ★★★ 0.999942 ★★★ 0.999792 ★★★ 0.999984 ★★★ 64.03 ★★★ 34.89 ★★★ 1.000002 n/s –611.83 1,482 
(58.91) (4.88) (4.65) (20.53) (14.64) (6.61) (17.07) (12.08) (0.17) 

35. Washington, DC 2.20 ★★★ 1.62 ★★★ 1.65 ★★★ 0.999916 ★★★ 0.999921 ★★★ 0.999981 ★★★ 0.86 n/s 15.78 ★★★ 0.999953 ★★★ –1386.89 2,048 
(52.22) (8.31) (8.62) (30.54) (4.39) (19.27) (0.78) (20.47) (4.90) 

36. West Palm Beach, FL 3.51 ★★★ 1.73 ★★★ 1.75 ★★★ 0.999963 ★★★ 0.999669 ★★★ 0.999986 ★★★ 30.48 ★★★ 20.37 ★★★ 0.999933 ★★★ –160.11 679 
(46.89) (5.21) (5.02) (7.71) (13.11) (7.08) (9.15) (5.13) (3.52) 

Notes: LL is the log-likelihood; n× t is the number of observations in the panel; in the event that an observation/s was dropped in the estimation process, n× t is not symmetric; 
values in () are z-statistics; all hypothesis tests are two-tailed; ★★★ denotes significant at 99%; ★★ denotes significant at 95%; ★ denotes significant at 90%; and n/s denotes not 
significant. 
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Table 4. Taxonomy of Land Use Change 
Austin, TX 

At a Distance from the Regional Center of Gravity Capturing % of Population
~5% ~15% ~25% ~35% ~45% ~55% ~65% ~75% ~85% ~95% 

500–0.13 –0.10 –0.10 –0.10 –0.09 –0.04 –0.02 –0.02 –0.01 -
1,000–0.35 –0.31 –0.32 –0.31 –0.29 –0.16 –0.10 –0.08 –0.04 –0.01 
2,000–0.20 –0.22 –0.28 –0.28 –0.31 –0.38 –0.30 –0.26 –0.17 –0.04 
3,000–0.02 –0.03 –0.06 –0.06 –0.08 –0.30 –0.39 –0.39 –0.31 –0.08 
4,000 - - - –0.01 –0.12 –0.30 –0.37 –0.38 –0.15 
5,000 - - - - –0.03 –0.16 –0.25 –0.36 –0.21 

Las Vegas, NV
At a Distance from the Regional Center of Gravity Capturing % of Population
~5% ~15% ~25% ~35% ~45% ~55% ~65% ~75% ~85% ~95% 

500–0.10 - 0.05 - - 0.07 - - - -
1,000–0.11 –0.01 0.09 - - 0.25 - - - -
2,000- - - - - 0.24 - - - -
3,000- - - - - 0.03 - - - -
4,000- - - - - - - - 0.01 -
5,000- - - - - - - - 0.01 -

Phoenix, AZ 
At a Distance from the Regional Center of Gravity Capturing % of Population
~5% ~15% ~25% ~35% ~45% ~55% ~65% ~75% ~85% ~95% 

500–0.03 –0.02 –0.02 –0.01 –0.01 –0.01 - - - -
1,000–0.06 –0.05 –0.04 –0.03 –0.03 –0.02 - 0.01 0.01 0.01 
2,000–0.01 –0.02 –0.03 –0.03 –0.03 –0.03 –0.01 0.02 0.02 0.05 
3,000- - - –0.01 –0.01 –0.01 - 0.01 0.02 0.08 
4,000- - - - - - - 0.01 0.02 0.10 
5,000- - - - - - - - 0.01 0.10 

Raleigh, NC
At a Distance from the Regional Center of Gravity Capturing % of Population
~5% ~15% ~25% ~35% ~45% ~55% ~65% ~75% ~85% ~95% 

500–0.11 –0.09 –0.08 –0.06 –0.05 –0.04 –0.04 –0.03 –0.03 –0.03 
1,000–0.32 –0.29 –0.25 –0.22 –0.19 –0.15 –0.14 –0.13 –0.12 –0.12 
2,000–0.20 –0.27 –0.28 –0.30 –0.30 –0.29 –0.29 –0.32 –0.31 –0.35 
3,000–0.02 –0.06 –0.07 –0.10 –0.12 –0.15 –0.19 –0.25 –0.29 –0.44 
4,000- - –0.01 –0.01 –0.02 –0.03 –0.06 –0.10 –0.14 –0.33 
5,000- - - - - - –0.01 –0.02 –0.05 –0.18 

Note: Values are the change in the conditional probability of distance extending; - denotes zero or negligible. 
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Figure 1. The Contemporary Urban Field 
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Figure 2. A Polycentric Rent Gradient 
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Figure 3. Bid Rent Process and Residential Land Use 
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                    Figure 4. Spatial Point Patterns in (clockwise from upper left) Austin, TX, Las Vegas, NV, Phoenix, AZ, and Raleigh, NC 
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Figure 5. Estimated and Differenced Survival Functions 
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Figure 5. Estimated and Differenced Survival Functions (cont…) 
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Figure 5. Estimated and Differenced Survival Functions (cont…) 
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Figure 5. Estimated and Differenced Survival Functions (cont…) 
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Figure 5. Estimated and Differenced Survival Functions (cont…) 
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Figure 5. Estimated and Differenced Survival Functions (cont…) 
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