
Final Spatial Dataset Codebook 
86614623C00008 – Neighborhood Change Indicators   

Alena Stern Manuel Alcalá Kovalski           Claudia D. Solari 
URBAN INSTITUTE URBAN INSTITUTE       URBAN INSTITUTE   

September 2024 

M E T R O P O L I T A N  H O U S I N G  A N D  C O M M U N I T I E S  P O L I C Y  C E N TE R  



ABOUT THE URBAN INSTITUTE 
The Urban Institute is a nonprofit research organization that provides data and evidence to help advance upward 
mobility and equity. We are a trusted source for changemakers who seek to strengthen decision making, create 
inclusive economic growth, and improve the well-being of families and communities. For more than 50 years, 
Urban has delivered facts that inspire solutions—and this remains our charge today. 

Copyright © October 2023. Urban Institute. Permission is granted for reproduction of this file, with attribution to 
the Urban Institute. Cover image by Tim Meko. 



Contents 
Acknowledgments i 

Final Spatial Dataset Codebook 1 
Overview of Spatial Dataset Structure 1 
Feature Data Sources 1 

American Community Survey (ACS) 1 
TIGER/Line Shapefiles 2 
Home Mortgage Disclosure Act (HMDA) 2 
HUD USPS Vacancy Data 2 
HUD Administrative Data 2 
Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics 

(LODES) 3 
The Institute of Museum and Library Services Public Libraries Survey 4 
Comprehensive Housing Affordability Strategy (CHAS) 4 
National Register of Historic Places 5 
Federal Emergency Management Agency (FEMA) Disaster Declaration Summaries 5 
Rationale for Data Sources and Variables 6 

Process of Input Dataset Construction 7 
Sourcing and Cross-walking Data 7 
Merging Data Sources 7 
Data Cleaning 8 
Identifying Subgroups for Modeling 9 
Outcome Generation 9 
Feature Generation 13 
Feature Engineering 14 

Neighborhood Change Modeling Methodology 15 
Model Training 15 
Model Selection 19 
Model Evaluation 22 

Discussion 22 
Limitations 24 
Next Steps 26 

Making Predictions on New Years of Data 28 
Appendix A: Missing Observations by Variable 29 
Appendix B: Publication Lag by Input Data Source 29 
Appendix C: Model Results 30 



i v  C O N T E N T S  

About the Authors 2 

Statement of Independence 3 



A C K N O W L E D G M E N T S  i 

Acknowledgments   
This codebook was funded by the US Department of Housing and Urban Development. We are 

grateful to them and to all our funders, who make it possible for Urban to advance its mission.   

The views expressed are those of the authors and should not be attributed to the Urban Institute, 

its trustees, or its funders. Funders do not determine research findings or the insights and 

recommendations of Urban experts. Further information on the Urban Institute’s funding principles is 

available at urban.org/fundingprinciples 

http://www.urban.org/fundingprinciples




F I N A L  S P A T I A L  D A T A S  E T  C O D E B O O K  1 

Final Spatial Dataset Codebook 

Overview of Spatial Dataset Structure 
The Spatial Dataset presents the outputs of the neighborhood change predictive modeling. The 

dataset is at the tract-year level and contains yearly predictions of neighborhood change for 2018-

2022. The dataset includes the following groups of variables: 

 Model prediction variables: These variables present the outputs of the selected predictive 

model. This includes the prediction year (year that prediction is being made), change year 

(year of neighborhood change that is being predicted), true neighborhood change outcome, 

predicted neighborhood change outcome, and the predicted probabilities of each type of 

neighborhood change. 

 Important features: These variables present the normalized values for the 20 most important 

features for the best model for the rural and urban subgroups. Some features may be most 

important for one model or both.   

 Neighborhood Change Definition Indicators: These variables present the indicator variables 

that need to all be true for a tract to be assigned to each neighborhood change type. 

Feature Data Sources 

American Community Survey (ACS) 

Years Covered: 2013-2022 

Description: Data on a range of demographic characteristics for all census tracts nationally including 

race/ethnicity, education status, household median income, housing characteristics, and public 

benefits received.   

Data Sourcing and Notes: Data were pulled using the tidycensus R package, which enables easy 

downloading of ACS 5-year survey data from the Census Bureau.   



TIGER/Line Shapefiles 

Years Covered: 2020 

Description: Data on the geographic borders of census tracts. Used to identify neighboring tracts and 

calculate.   

Data Sourcing and Notes: We obtained the shapefiles for every tract in the United States (not 

including US Territories) using the tigris R package, which enables easy downloading of the 

TIGER/Line shapefiles. 

Home Mortgage Disclosure Act (HMDA) 

Years Covered: 2011-2022 

Description: Data on mortgage loan applications characteristics aggregated at the tract level. Includes 

summary indicators such as median loan amount, median borrower income, and a set of indicators 

describing loans made by purpose. 

Data Sourcing and Notes: We obtained loan-level data cleaned by researchers at Urban’s Housing 

Finance Policy Center and originally downloaded from the Consumer Financial Protection Bureau’s 

website. 

HUD USPS Vacancy Data 

Years Covered: 2008-2023 

Description: The HUD USPS data provides aggregate vacancy and no-stat counts of residential and 

business addresses that are collected by postal workers and submitted to HUD on a quarterly basis. 

Data Sourcing and Notes: These data were provided directly to us by our HUD COR via secure file 

transfer protocol. The data were provided in quarterly extracts, aggregated to the 2020 census tract 

level. 

HUD Administrative Data 

Years Covered: 2012-2023 
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Description: The HUD Administrative data provides aggregate counts of housing choice voucher 

tenants and projects by census tract from HUD’s administration of these programs. 

Data Sourcing and Notes: These data were provided directly to us by our HUD COR via secure file 

transfer protocol. The data were provided in quarterly extracts, aggregated to the 2020 census tract 

level. In data processing, we calculated yearly averages for each 2020 tract by taking the mean of all 

of the quarters in the given year for each tract. We do this to address ” blips” in the data where there 

is a great increase or decrease over previous quarters due to reporting lags. Our COR advised us that 

these blips are smoothed out in yearly data. Note that for 2022, data is only available for a single 

quarter (December) and for 2023, data is only available for June and September. 

Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination 
Employment Statistics (LODES) 

Years Covered: 2013-2022 

Description:   LODES data provides the number of jobs and workers by income level and number of 

workers by race (excluding federal jobs). 

Data Sourcing and Notes: Pulled using the lehdr R package which allows for users to interact with 

LODES data.   Federal jobs were excluded from the total count because of a change in how they were 

recorded between 2014 and 2015 that caused an apparent change of 14 percent in the number of 

federal jobs reported (see more here). Additionally, select states are missing data in certain years (see 

table below).   

https://github.com/jamgreen/lehdr
https://lehd.ces.census.gov/doc/help/onthemap/LODESDataNote-FedEmp2015.pdf


The Institute of Museum and Library Services Public Libraries Survey 

Years Covered: 2006-2022 

Description: The Institute of Museum and Library Services conducts the Public Libraries Survey (PLS) 

annually in order to examine when, where, and how library services are changing to meet the needs of 

the public. 

Data Sourcing and Notes: These data were downloaded from the IMLS website. The PLS data 

provides the latitudes and longitudes of library outlet locations. We then performed a spatial join 

between the library locations and the 2020 census tract polygons to determine the libraries that fall in 

each tract.   

Comprehensive Housing Affordability Strategy (CHAS) 

Years Covered: 2005-2009 to 2016-2020 

Description: HUD receives custom tabulations of American Community Survey (ACS) data from the 

U.S. Census Bureau to produce the CHAS measures which demonstrate the extent of housing 

problems and housing needs, particularly for low-income households.    

https://www.imls.gov/research-evaluation/data-collection/public-libraries-survey
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Data Sourcing and Notes: These data were downloaded from the CHAS website. Before the 2009-

2013 data, HUD reported the data at the subtract (080) level. We first aggregated the data to the 

census tract level for those years. For the other years, the data are provided at the tract level. 

National Register of Historic Places 

Years Covered: 2008-2022 

Description: The National Register of Historic Places geospatial dataset, provided by the Department 

of the Interior, is intended to be a comprehensive inventory of all cultural resources that are listed on 

the National Register of Historic Places. However, this dataset excludes all features deemed 

'restricted' or 'sensitive', such as sensitive archaeological sites. 

Data Sourcing and Notes: These data were downloaded from data.gov. We then performed a spatial 

join between the historic place location (point or polygon) and the 2020 census tract polygons. We 

identified a historic place as in a given tract if any of its spatial footprint fell within the census tract. 

Therefore, a given historic place can span multiple tracts.   This dataset also provides the year each site 

was established. We used this information to calculate the number of historic sites in each 2020 tract 

in each year.   

Federal Emergency Management Agency (FEMA) Disaster Declaration Summaries 

Years Covered: 2009-2022 

Description: The FEMA Disaster Declarations Summaries is a summarized dataset describing all 

federally declared disasters. This dataset lists all official FEMA Disaster Declarations from 1953 to 

present. It includes all three disaster declaration types: major disaster, emergency, and fire 

management assistance.    

Data Sourcing and Notes: We pulled the data from the FEMA API using the rfema package from 

2009-2022 at the county level. We then applied the county information to each tract within the 

county and created binary variables indicating if a severe disaster or moderate disaster occurred by 

tract and quarter. 

https://www.huduser.gov/portal/datasets/cp.html#data_2006-2020
https://catalog.data.gov/dataset/national-register-of-historic-places-aea8f


Rationale for Data Sources and Variables 

Neighborhood Change Factor Relevant Datasets (Variables Measuring Factors) 

Demographic composition  American Community Survey (race, ethnicity, age, 
foreign born, languages spoken) 

Income and education 
composition 

 American Community Survey (household income, 
educational attainment, health insurance coverage) 

Land and dwelling use  American Community Survey (tenure, units in structure) 

 HUD USPS vacancy data (residential and business 
vacancy, no-stat, and active addresses) 

 HUD administrative data (housing choice voucher 
tenants and projects) 

Population density  American Community Survey (population) 

 TIGER/Line shapefiles (land area) 

Quality of housing stock  Home Mortgage Disclosure Act (mortgage activity, 
home prices). Used to identify changes in race, ethnicity, 
and income of new homebuyers, home values, and the 
share of investor-owned homes.   

 American Community Survey (median gross rent, home 
value, number of bedrooms, ratio income to home value) 

 Comprehensive Housing Affordability Strategy (housing 
problems – when a housing unit meets at least one of 
the following: incomplete kitchen facilities, incomplete 
plumbing facilities, overcrowded, cost burdened). Used 
to identify changes in housing problems and housing 
affordability mismatch.   

 FEMA Disaster Data. Used to capture disaster shocks 
that affect housing quality and prices in a given tract.   

Economic Investment  LEHD Origin-Destination Employment Statistics 
(Jobs/workers at different income points). Used to 
identify changes in the number (in raw and per capita 
terms) and income of jobs and workers and the 
race/ethnicity composition of workers. 

 American Community Survey (broadband access, 
commute time, employment rate) 
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Cultural and institutional 
characteristics 

 The Institute of Museum and Library Services Public 
Libraries Survey. Used to identify library openings and 
closures. 

 National Register of Historic Places (historic 
preservation designation) 

Process of Modeling Dataset Construction 

Sourcing and Cross-walking Data 

We sourced each of our main input datasets as outlined in the data sourcing descriptions above. We 

saved the raw datasets in our secure file storage separately for each source. For the ACS, HMDA, and 

CHAS data, the pre-2020 tract-level estimates are provided for the 2010 census tracts. For our model, 

we needed to cross-walk all of the estimates between 2010 and 2020 census tracts to have consistent 

time-series estimates for 2020 census tracts for modeling. To do this, we created 2010 block group to 

2020 tract and 2010 tract to 2020 tract crosswalks from the NHGIS crosswalks that provide a 

population weighted interpolation measure to transform from 2020 census tracts to 2010 census 

tracts.   We used the 2020-to-2010 NHGIS weights along with 2010 and 2020 tract-level population 

estimates from the ACS to derive the 2010-2020 weights.   

Merging Data Sources 

We combined the data sources into two files: 

1) Yearly Aggregated Data: Includes data from the data sources (ACS, HMDA, LODES, CHAS, 

IMLS, NRHP) that provide estimates annually. This dataset is at the census tract – year unit of 

analysis, with columns for each included variable across the three datasets. Where a given 

data source does not have coverage for a census tract – year combination (such as the missing 

years for LODES data described above), the values for the relevant column(s) are stored as NA 

to be imputed prior to modeling. See Appendix A for the number of missing observations by 

variable. We include a date column that stores the quarter that an estimate was reported. We 

store this information as YYYY-12-01 for each year (this is done for ease of analysis though 

we recognize that the HUD data are better described by the last day of the reporting month). 

https://www.imls.gov/research-evaluation/data-collection/public-libraries-survey
https://www.imls.gov/research-evaluation/data-collection/public-libraries-survey
https://www.nhgis.org/geographic-crosswalks#download-from-block-groups


We choose to capture each annual estimate as December as that aligns with the typical 

release timing of American Community Survey data.   

2) Quarterly Aggregated Data: Includes data from the three data sources (HUD USPS, HUD 

Administrative, FEMA) that provide quarterly records. This dataset is at the census tract – 

quarter unit of analysis, with columns for each included variable across the two datasets. 

Where a given data source does not have coverage for a census tract – quarter combination 

(such as the HUD Administrative data not having coverage for 2022 and 2023, which are 

covered by the HUD USPS data), the values for the relevant column(s) are stored as NA to be 

imputed prior to modeling. See Appendix A for the number of missing observations by 

variable. We include a date column that stores the quarter that an estimate was reported. We 

store this information as YYYY-03-01, YYYY-06-01, YYYY-09-01, and YYYY-12-01 for the 

four quarters of each year (this is done for ease of analysis though we recognize that the HUD 

data are better described by the last day of the reporting month). 

For the HUD USPS data, we produced quarterly estimates of the percentage of total residential 

addresses and business addresses classified as vacant and no-stat by the data. We also calculated the 

number and percentage of active addresses by subtracting vacant and no-stat addresses from the 

total number of addresses.   

Data Cleaning 

We performed the following data cleaning steps in creating the raw input dataset: 

 We adjusted variables reported in nominal dollars to real 2022 dollars to account for inflation. 

This includes median household income (ACS), median income of mortgage loan borrowers 

(HMDA), and median mortgage loan amount (HMDA).   

 The 2022 ACS shifted from reporting data for Connecticut counties to “county-equivalent” 

planning regions. This changed the FIPS codes used for Connecticut census tracts for the 

2022 ACS. We cross-walked the 2022 ACS data for Connecticut to the 2020 Census 

geographies using crosswalks created by CT Data and the Census Bureau. 

 We filtered the data to the tracts where USPS data are available. The USPS data are available 

for the 83,985 tracts where mail service is provided out of the 84,414 total 2020 census 

tracts. We restricted our analysis to just those tracts where the USPS data has coverage. 

There are three tracts that are included in the USPS data for which some of our other data 

https://www.ctdata.org/blog/geographic-resources-for-connecticuts-new-county-equivalent-geography
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sources, including the ACS, do not have coverage: 99999000400, 99999002900, and 

99999081403. All of these tracts begin with 99999 indicating they fall outside of a 

Metropolitan Statistical Area/Metropolitan Division . 

Identifying Subgroups for Modeling 

We identified two data subgroups for modeling: urban and rural tracts. We assigned each tract to one 

of these two subgroups using Census Urban Area classifications.1 The census identifies urban areas as 

densely concentrated sets of block geographies. Any geography outside of this is considered rural.   

Because not all census tracts nest perfectly within urban areas, we used a cross-walk from the 

Missouri Census Data Center’s Geocorr tool to identify the portion of the 2020 tract boundaries that 

was within the urban area versus the rural area using the 2022 Census urban area definitions. Tracts 

that were then classified as rural or urban based on if the majority of their 2020 population was in the 

rural or urban portion. The purpose of these subgroups is to improve our modeling results by 

separating tracts into smaller groups that are likely to exhibit similar types of neighborhood change 

and for which similar signals of change are likely to be relevant. To perform time-series cross-

validation, we needed to keep the modeling subgroups consistent over time. Accordingly, we used the 

subgroup definitions from a single point in time to separate tracts across the full time series. We 

recognize that incurs a small loss of precision; for example, a tract that becomes more urbanized over 

time would be more similar to rural tracts in earlier years and more similar to urban tracts in later 

years.   We offset that loss in precision by including features that capture within-subgroup variation in 

urbanization, such as address density. Beginning in 2010, census tracts cover the entire United States, 

therefore, our subgroup classifications will cover the entire country. 

Outcome Generation 

We focused on three types of neighborhood change: 1) Displacement Due to Price Pressures, 2) 

Population Loss Due to Economic Disinvestment, and 3) Inclusive Growth. 

1 To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing 
units or have a population of at least 5,000. See the Census Urban Rural documentation for more information: 
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html 

https://www.ffiec.gov/Census/Census_Flat_Files/cen2022_30MAR22.pdf
https://www.ffiec.gov/Census/Census_Flat_Files/cen2022_30MAR22.pdf
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html
https://mcdc.missouri.edu/applications/geocorr2022.html
https://www2.census.gov/geo/pdfs/education/CensusTracts.pdf
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html


We consulted extensively with our project advisory group to inform the neighborhood change types. 

Based on these consultations, we identified the following goals for the neighborhood change 

definitions: 

 Providing actionable information: Project advisors identified preventing displacement of 

incumbent residents and businesses as a key goal of having predictions of neighborhood 

change. They expressed the desire to use this information to help target resources and make 

the case for interventions to mitigate displacement. They also identified interest in using the 

data to address the “missing middle” economic core in rural areas caused by outmigration of 

working age populations.   

 Not stereotyping/stigmatizing communities: We and our project advisors felt concern that 

labels could serve to stigmatize communities. To avoid this, we wanted our change types to 

focus on the act of change (e.g., displacement/outmigration) rather than assigning a label to a 

community (e.g., “declining”). 

 Understandable definitions: We wanted our definitions of change to be easily understood by 

users of the data. We did not want to aim for comprehensiveness at the expense of 

understandability. 

We measured each type of change over a 5-year period. We needed to measure change over at least 

5 years to avoid comparing overlapping ACS 5-year surveys when defining change (e.g., comparing 

change between the 2013-2017 and 2018-2022 5-year ACS surveys). While other studies have 

looked at change over a longer period of time (e.g., comparing change over 10 years by comparing 

decennial census data), because the 5-year ACS data is available beginning in 2013, we chose to look 

at change over 5-year periods to allow for multiple periods of change for time-series cross-validation 

as outlined under the model training section below.   Our neighborhood change types and definitions 

are as follows: 

Displacement Due to Price Pressures (only measured for urban areas) 

A tract is measured as experiencing displacement due to price pressures if all of the following 

conditions are met: 

 Median household income is below county median household income in the starting year, 

suggesting a population at risk of displacement. 

 Monthly median housing costs as a share of mean second quintile income in the start year 

increases by at least 10 percent, suggesting housing price pressures. 
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 The proportion of the tract's population using public benefits decreases, suggesting a 

displacement of the lowest income community members. 

 The tract's median household income increases, suggesting a displacement of lower income 

households by higher income households. 

Population Loss Due to Economic Disinvestment 

A tract is measured as experiencing population loss due to economic disinvestment if all of the 

following conditions are met: 

 The proportion of the population with a bachelor's degree or higher declines, suggesting a loss 

of the more highly educated population. 

 Median household income declines by at least 5 percent, suggesting a decline in economic 

outcomes. 

 A decrease in the number of households, suggesting population loss. 

Inclusive Growth 

A tract is measured as experiencing inclusive growth if all of the following conditions are met: 

 Median household income is below the county median household income in the starting year, 

suggesting a sufficient low-income population for inclusive growth to be relevant. 

 The inflation adjusted income for the first and second quintile of residents both increase, 

suggesting that income increases are shared by the lower quintiles of the income distribution. 

 Monthly median housing costs as a share of mean second quintile income in the start year 

increases by less than 5 percent, suggesting limited price pressures. 

 The number of tenant-based voucher holders does not decline during the period, suggesting 

that landlords are not refusing to rent to voucher holders. 

 The number of households grows during the period, indicating population growth. 

The three types of neighborhood change are mutually exclusive, so a tract can only experience one 

type of change in a given 5-year period. It is also possible that a tract did not experience any of these 

three types of change in the time period, which we refer to as “Change Not Measured.” This does not 

mean that the tract experienced no change, but rather that none of these three specific change 

definitions are met. The proportion of all tracts falling into each change type in a given year (where the 

year corresponds to the end year of the 5-year period of change) is provided in the table below: 



Change Type 2018 2019 2020 2021 2022 

Displacement Due to Price Pressures 1.2% 1.9% 2.4% 2.4% 2.2% 

Population Loss Due to Disinvestment 4.2% 3.3% 4.0% 3.9% 4.2% 

Inclusive Growth 2.4% 2.4% 2.2% 2.0% 2.2% 

Some tracts have a NA value for a given neighborhood change type when one of the variables used in 

the definition cannot be measured. For example, a tract would have a value of NA for all three change 

types when median household income cannot be measured because a tract has zero households. In 

such cases, we treat the tract as “change not measured” for the purposes of modeling. 

Our model predicts neighborhood change one year ahead. For example, as of 2021, it predicts what 

change will occur in 2022. To make that prediction, the model uses the most recent input data that 

would be available on the prediction date. To make a prediction in December 2021, the most recent 5-

year ACS data would be the 2016-2020 data.   For the purposes of this submission, the 2018-2022 5-

year ACS was the most recent ACS data available. Therefore, we used the following periods of change 

for model training and testing: 

Period of Change Predicted Date Prediction Made Most Recent ACS 5-year Available 
for Features 

2017-2022 December 2021 2020 
2016-2021 December 2020 2019 
2015-2020 December 2019 2018 
2014-2019 December 2018 2017 
2013-2018 December 2017 2016 

The most recent data available on a given prediction date depends on the publication lag of the data 

source. The publication lags for each source used in training are provided in Appendix B. Future 

analysis could test different prediction periods to see if performance degrades with larger windows of 

prediction. For example, if a user wanted to predict neighborhood change 2 years ahead, they would 

predict change in 2017-2022 in December 2020, making the 2014-2019 5-year ACS the most recent 

data available for prediction. 
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Feature Generation 

We then used the raw input dataset to produce a variety of features, or predictor variables, for 

modeling. Prior to feature generation, we replaced or imputed missing values of raw variables. This is 

important to both create the most accurate predictions and because some model algorithms are not 

robust to missingness and drop observations with any missing feature values. While performing 

imputation, we took care to avoid data leakage and to tailor our strategy to different statistics. In 

particular: 

 Separate Imputation of Yearly and Quarterly Data: To ensure the integrity of our data, we 

performed imputation separately for yearly and quarterly datasets. This strategy avoids 

imputing structurally missing data for quarters that are inherently absent in the yearly data. 

 Separate Imputation of Training and Testing Data: We imputed missing values in training and 

testing datasets independently. This was a key step to prevent data leakage, ensuring that 

information from the testing dataset does not influence the training process, preserving the 

model’s ability to generalize to unseen data. 

 Imputation by Year-Month: We executed imputation at the granularity of the year-month 

level to avoid any leakage of information over time. This ensures that future data points do 

not inadvertently influence past imputation, maintaining the integrity of the time-series 

predictions. 

 Imputation Strategy for Each Statistic: We applied median imputation for variables that 

represent ratios or shares, replaced missing counts and totals with zeros, and utilized k-

nearest neighbors (KNN) imputation for medians and indexes using total population, median 

household income, and share of population with a bachelor’s degree as predictors.   

Normalization was performed prior to KNN imputation to ensure all predictors had equal 

weight in identifying the nearest neighbor observations. 

We created four main types of features: 

1. Change in column: measures the change in a given variable over various periods of time prior 

to the prediction date.   These columns can capture early changes in neighborhood change 

factors prior to the prediction date, which may be predictive of future change. 

2. Change in neighbors: measures the change in the average value of a variable in neighboring 

tracts over various periods of time prior to the prediction date. We define neighboring tracts 

as tracts that share any contiguity with the given tract (e.g., sharing part of a border). 



Changing neighborhood conditions in surrounding areas, such as changes in home prices, can 

be predictive of future change in a given tract. 

3. Change in change in column: measures the difference in the change in a variable over two 

successive periods of time. For example, the difference in the change between 2015-12-01 

and 2016-12-01 and between 2016-12-01 and 2017-12-01. A sharp change in the rate of 

change in a variable could indicate a shock or a change in neighborhood circumstances that is 

predictive of future change. 

4. Consistency of change in column: measures whether the change in a variable over a given 

number of consecutive time periods is consistently negative or positive.   A consistent change 

across multiple time periods could indicate a significant trend that is predictive of future 

neighborhood change. 

We created features capturing change over a 3-year period for annually-reported features and over a 

1-year and 3-year period for quarterly reported features. For the 3-year change features calculated 

using ACS data, these changes will be measured with overlapping ACS data. For example, change 

between the 2021-2017 5-year ACS and the 2018-2014 5-year ACS. Both surveys contain data for 

2017 and 2018. Therefore, the observed level of change will likely be artificially low for all 

observations given the overlap. When we convert the features to z-scores as noted below, we move 

from looking at the levels of features to the relative values of features across observations. Because 

the overlap applies to all tracts, we expect that the relative differences in change across tracts will still 

be accurately captured in features calculated from overlapping 5-year ACS surveys. We also included 

features for the raw variables for the given prediction year.   

Feature Engineering 

To prepare the raw variables and derived features described below for modeling, we performed the 

following feature engineering steps: 

 We dropped character variables included in some of the raw datasets such as “CBSA Name.” 

We converted the logical variables created by the consistency of change features to numeric. 

The result is a feature dataset of entirely predictor variables. 

 We dropped variables with more than 10 percent of missing observations. Given the data 

imputation performed prior to feature engineering, this only occurred if a given variable is 
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entirely missing for a year or quarter. In these cases, median imputation would fail to fill NAs 

since no non-NA median value can be calculated. 

 We dropped variables that have zero variance, or where all observations for a given year have 

the same value. In this case, the variable will not add predictive power because it cannot 

differentiate between classes.   

 We dropped variables that are very highly correlated with other predictor variables, with an 

absolute correlation of 0.9 or greater. These variables likely don’t add predictive power given 

their strong correlation with other predictor variables and may result in slower training or 

nonintuitive feature importance results.   

 We transformed all-predictors to z-scores by subtracting the variable mean and dividing by 

the standard deviation. The interpretation of the resulting values is the standard deviations 

above or below the mean of the given variable. We did this so all variables are on the same 

scale. This is particularly important for distance-based algorithms like k-nearest neighbors 

where variables with bigger ranges can have more importance in the prediction simply by 

virtue of the larger distances between observations created by their larger scales.   

At the end of this process, we had 261 (rural) and 249 (urban) of 449 raw feature variables available 

for modeling. The full list of features used in our final models are listed in Appendix C. 

Our approach relied on the implicit feature selection performed by each of our model algorithms. For 

example, the penalty hyperparameter of multinomial regression determines how much feature 

selection is performed as part of model fitting. In a decision tree algorithm, the model determines the 

most effective subset of features and decision points (e.g., median household income greater than 

$80,000) to use for prediction, implicitly selecting the most predictive subset of features. However, if 

many features are irrelevant, this implicit feature selection may be insufficient to prevent model 

performance reduction. Future analysis could try explicit feature selection methods prior to model 

training to reduce the number of features included in modeling to the most relevant subset. 

Neighborhood Change Modeling Methodology 

Model Training 

We performed model training using the tidymodels package in the R programming language. We used 

the following machine learning methods to predict neighborhood change: 1) Decision Tree; 2) Random 



Forest; 3) Gradient Boosted Tree; 4) Logistic Regression; and 5) K-Nearest Neighbors.   We tested both 

a multiclass modeling approach and a binary modeling approach. Depending on the underlying 

structure of the data, each of these approaches can be more or less effective than the other. The 

multiclass approach involved fitting one set of models to predict a single outcome variable with four 

possible classes: displacement due to price pressures, population decline due to economic 

disinvestment, inclusive growth, and change not observed. As described above, the “change not 

observed” class indicates that one of the three neighborhood change types did not occur in the given 

tract. The binary modeling approach involved fitting three separate binary classification models to 

predict whether or not each of the change types occurred. In both modeling approaches, we trained 

separate models for urban and rural tracts. We ultimately determined that the two approaches offered 

similar results in our initial testing, so we proceeded with the multiclass approach given the 

computational efficiency of training one model per subgroup instead of three. However, our approach 

involved using the exact same set of features in the multiclass and binary case. Further analysis could 

try tailoring the features used in each binary case to the change outcome being predicted, which could 

improve results. 

For each model group, we trained a variety of different combinations of machine learning 

algorithms, hyperparameters, and features using a process called grid search cross-validation to 

identify the best model.   We first split the total set of data into training data and testing data. We 

performed this split by tract GEOID, assigning 75 percent of the tracts to the training set and 25 

percent of the tracts to the testing set. We fitted and evaluated the models on the training data to 

select the best model, and then evaluated the best model on the testing data to estimate the model 

performance on unseen (i.e., out-of-sample) data. 

To perform cross-validation during the training process, we further split the training data into 

several subsets, called folds. We used a specific type of cross-validation called time-series or rolling 

window cross-validation approach to partition our data (Hyndman and Athanasopoulos 2021). This 

approach splits the training data into multiple subsets or folds over time as shown in the table below. 

Each fold (represented by a row) is then split into a subset of data for training (blue and pink) and 

validation (yellow). For example, in fold 1, we train a model to predict change from 2014-2018 and 

then evaluate how well the model predicts change from 2015-2019.   For each combination of 

algorithm, hyperparameters, and features considered, the cross-validation process trains a separate 

model on the training data for each fold and then calculates average model performance on the 

validation sets. This average validation performance is used to select the best model, which we then 

applied to the unseen test set to estimate out of sample error. 
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Used for prediction Predict change in this period Validate on change in this period 

2009 2010 2011 2012 2013 2014 2015 2016 

2017 

2018 2019 2020 2021 2022 

By creating folds using a rolling window, the average validation performance provides a more 

accurate estimate of how the model will perform over time when applied to new years of data. This 

helped us better estimate how the model will perform in practice when HUD staff use the model to 

generate new neighborhood change predictions each year. 

We used the common preprocessing workflow described in the feature engineering section 

above for all models. Then we defined a model specification and hyperparameter tuning grid for each 

model as described below: 

Model Hyperparameter 

Decision Tree 

Tree Depth: The maximum number of levels in the decision tree. A 
deeper tree can capture more complex patterns but may also lead to 
overfitting. 

Minimum N: The minimum number of data points required to be in a 
node before the algorithm considers splitting it further. A smaller 
number of points can capture more complex patterns but may also lead 
to overfitting. 

Random Forest 

Trees: The number of trees in the forest. More trees can increase 
accuracy but with higher computational costs. 

Minimum N: The minimum number of samples required to split a node. 
A smaller number of points can capture more complex patterns but may 
also lead to overfitting. 

Boosted Trees 

Trees: The number of trees to fit. More trees can increase accuracy but 
with higher computational costs. 

Learning Rate: A number for the rate at which the boosting algorithm 
adapts from iteration-to-iteration. 



Loss Reduction: the minimum reduction in loss required to make a 
further partition on a leaf node. 

K-Nearest Neighbors Neighbors: The number of nearest neighbors to consider when making a 
prediction. 

Multinomial Regression 

Penalty: The strength of the regularization applied to the model. Higher 
penalty values perform stronger regularization, which can lead to some 
features being dropped from the model. 

Mixture: The proportion of L1 (lasso) regularization and L2 (ridge) 
regularization to use in the model 

The specific hyperparameter values tested are outlined in the accompanying code. During model 

training, we calculated the following metrics on our validation sets during cross-validation: 

 Accuracy: How often the model's predictions are correct overall. It measures the percentage 

of all predictions that are accurate.   

 Recall: The proportion of actual positives that are correctly identified by the model. It is 

particularly useful in situations where the cost of missing a positive instance is high. 

 Precision: The proportion of positive identifications that are actually correct. It is important 

when the cost of false positives is high. 

 Receiver Operating Characteristic - Area Under the Curve (ROC-AUC): This score measures 

the quality of the model's predictions across all possible classification thresholds. It considers 

both the ability to correctly identify true positives and the rate of false positives. A higher 

ROC-AUC value indicates a better overall model performance, with 1 being perfect and 0.5 

indicating a performance no better than random guessing. 

For accuracy, recall, and precision, we used macro averaging to calculate the metric values in the 

multiclass models. Macro averaging reduces multiclass predictions down to multiple sets of binary 

predictions, calculates the corresponding metric for each of the binary cases, and then averages the 

results together. 

For each model type, we selected the best model among all the different hyperparameters tried based 

on the recall metric. We chose the recall metric because it captures what proportion of tracts that 

truly experience change are predicted to undergo that type of change. In a policy context, we 

envisioned that the risk of a false negative – or failing to predict change in a neighborhood that does 

experience change – is the greatest risk that we wanted to optimize for avoiding.    
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Model Selection 

After selecting the best model within each model type, we then selected the overall best model across 

types.   To select the overall best model, we considered both the performance metrics defined above 

and metrics assessing fairness in model performance by the following groups: 

 Year:   Model performance by year in the temporal cross-validation training approach. We look 

at the standard errors of each metric reported across the four annual folds used in training to 

gauge the amount of variance in performance over time. 

 Race and Ethnicity of Tract: Model performance for tracts with predominantly (> 60%) white 

residents, predominantly (> 60%) residents of color, or similar shares of white residents and 

residents of color (not falling into either previous group). We compare performance for the 

predominant groups. 

 Rural vs. Urban Tracts: Performance for models trained on rural and urban subgroups. We 

take the difference between the performance of the subgroup in question and the other 

subgroup. 

 Tenure: Model performance for tracts with predominantly (> 60%) owner-occupied units, 

predominantly (> 60%) renter-occupied units, or similar shares of renter-occupied and owner-

occupied units (not falling into either previous group). We compare performance for the 

predominant groups. 

The specifications and training performance metrics for the best models are as follows: 

Best Model for Urban Subgroup 

Multiclass boosted tree model with 50 trees, learning rate of 0.1, and loss-reduction of 31.6. 

Class Accuracy Recall Precision ROC-
AUC 

Year 
Variation 

Race/ 
Ethnicity 

Tenure 

Overall 
Averaged 

0.75 0.49 0.34 0.80 0.0065 

Displacement 
Due to Price 
Pressures 

0.45 0.45 0.25 Predominantly 
white: 0.39 

Predominantly 
POC: 0.46 

Predominantly 
Owner: 0.34 

Predominantly 
Renter: 0.47 

Population 
Loss Due to 
Disinvestment 

0.21 0.21 0.25 Predominantly 
white: 0.20 

Predominantly 
POC: 0.22 

Predominantly 
Owner: 0.20 

Predominantly 
Renter: 0.23 



Inclusive 
Growth 

0.37 0.37 0.25 Predominantly 
white: 0.41 

Predominantly 
POC: 0.36 

Predominantly 
Owner: 0.38 

Predominantly 
Renter: 0.40 

No Change 
Measured 

0.86 0.86 0.25 Predominantly 
white: 0.91 

Predominantly 
POC: 0.78 

Predominantly 
Owner: 0.95 

Predominantly 
Renter: 0.70 

Notes: ROC-AUC is only measured for the overall multiclass results. The standard error of the accuracy metrics 
across years is only calculated for the overall multiclass results. The fairness metrics for race/ethnicity and tenure 
are only calculated for the single-class results. 

ROC AUC Curves by Neighborhood Change Type 

Best Model for Rural Subgroup 

Multiclass random forest model with 25 trees and minimum N of 4. 

Class Accuracy Recall Precision ROC-
AUC 

Year 
Variation 

Race/ 
Ethnicity 

Tenure 
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Overall 
Averaged 

0.94 0.35 0.61 0.70 0.0028 

Population Loss 
Due to 
Disinvestment 

0.22 0.22 0.33 Predominantly 
white: 0.20 

Predominantly 
POC: 0.22 

Predominantly 
Owner: 0.19 

Predominantly 
Renter: 0.23 

Inclusive 
Growth 

0.24 0.23 0.5 Predominantly 
white: 0.25 

Predominantly 
POC: 0.22 

Predominantly 
Owner: 0.17 

Predominantly 
Renter: 0.22 

No Change 
Measured 

1.00 1.00 0.33 Predominantly 
white: 1.00 

Predominantly 
POC: 1.00 

Predominantly 
Owner: 1.00 

Predominantly 
Renter: 1.00 

Notes: ROC-AUC is only measured for the overall multiclass results. The standard error of the accuracy metrics 
across years is only calculated for the overall multiclass results. The fairness metrics for race/ethnicity and tenure 
are only calculated for the single-class results. 

ROC AUC Curves by Neighborhood Change Type 

A list of the model specifications and performance metrics for the best model in each type is provided 

in Appendix D.   



Model Evaluation 

We then applied our final model to create predictions on the test data. The model results on this 

unseen data provide an estimate of how the model will perform on new, out-of-sample data. To 

maintain the validity of the testing results as an estimate of out-of-sample performance, it is critical to 

avoid data leakage, or using information from the testing set during the training process. It was 

therefore important to not review the results on the testing data until the very end of the modeling 

process when the final model was selected, and no further model training would be performed. We 

have not included the test results at this time in case further updates are required based on COR 

feedback. We can update to include the test results once our COR provides feedback. 

Discussion 
These predictions of neighborhood change are starting point for further exploration. While having the 

neighborhood change predictions data is valuable, those data would be more useful if users were 

offered guidance as to how they might make sense of those predictions and to be offered ideas of 

possible responses to those predictions to ensure equitable and inclusive neighborhood change to 

strengthen the health of communities (see recommendations for a user guide below).    

Our project advisory group offered several suggestions of other indicators of neighborhood change 

that we were unable to act upon in this project.   For example, it can be important to better single out 

areas planned for development that were once vacant, to better ensure that development embeds 

equity in its process as early as possible. While we did our best to incorporate signals of institutional 

shifts that can indicate community-level, and therefore neighborhood-level, change that are especially 

impactful in rural aeras, we were not able to incorporate all the ideas from the project advisory group. 

Some ideas include looking at the change in the number of churches, charter schools, hospitals or 

healthcare facilities, community centers, and nonprofit and service providers. None of our indicators 

of change reflected issues around safety, which could lead to displacement and would require more 

information to better tease out reasons behind the change. While this model was able to factor in 

some amount of environmental hazard risk, the project advisory group encouraged additional 

pollutants and environmental contaminants are important indicators of neighborhood change.   

During the course of this project, we had ideas of several other datasets that would be worth 

considering to incorporate into our machine model predictions, such as: the National Center on 

Charitable Statistics, the National Center for Education Statistics Common Core of Data, and the 

https://nccs.urban.org/nccs/
https://nccs.urban.org/nccs/
https://nces.ed.gov/ccd/aboutccd.asp
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Homeland Infrastructure Foundation-Level Data. Our advisors indicated that these data sources could 

be particularly valuable to capture additional dimensions of community change in rural areas. Future 

developments of these machine learning models should consider these and other datasets that could 

enhance the predictions of neighborhood change.   

Our initial approach focused on predicting neighborhood change one year out as we expected that 

making nearer-term predictions would give more accurate results. Our advisors suggested that having 

predictions of change further out could expand the possible policy interventions when change is 

predicted. Accordingly, future developments of this model should test predictions of change greater 

numbers of years out. Given data lags, predictions further out in time can better align with the real-

time observations of community leaders and policymakers. We also recognize that conceiving of 

change as a binary variable limits understanding of the extent or severity of change. Future models 

could aim to capture change as a continuous variable and train regression models to predict the level 

of change. These efforts could also consider measuring neighborhood of a given tract relative to its 

county. Future iterations of the model might consider the indicators around the housing stock 

differently for owner-occupied versus renter-occupied properties. Models could further test different 

conceptualizations of rural, suburban, and urban areas while also outlining more sensitivities and 

nuances for tribal areas. One idea from the project advisory group was to offer features in the online 

tool for users to share feedback on inaccuracies in predictions and explanations so that we could fold 

that feedback into future iterations of the predictions.   

As users begin to make decisions and implement interventions based on these predictions, it would be 

exciting to overlay those activities to see how it impacted neighborhood change. This could take the 

form of flagging when predictions were inaccurate and investigating if those inaccuracies are due to 

interventions, which could allow to meaningful case studies and evaluations to determine what works 

to create equitable and inclusive change.    

We could also consider other uses of similar machine learning approaches, such as using these models 

to better estimate Fair Market Rents (FMRs). FMRs are often criticized as being too low and that 

voucher-holders cannot afford a unit of their voucher size in the neighborhoods of their choice. 

Machine learning models could help identify areas where FMRs need to change or be re-evaluated to 

better reflect the shifts in rental housing costs.   

https://hifld-geoplatform.opendata.arcgis.com/search?collection=Dataset


Limitations 
The results of this project are a strong first step in developing predictions of change for 

neighborhoods across the country. However, we face several limitations, including but not limited to 

the following: 

 The analysis used the ACS 5-year estimates which do not include data for individuals living in 

group quarters. This means that our resulting predictions may be less effective for tracts with 

a high proportion of individuals living in group quarters, such as college dormitories, nursing 

homes, prisons, etc. Future analysis could incorporate data from the ACS Group Quarters data 

and consider how to extend this analysis to provide meaningful data for those tracts. 

 We developed our neighborhood change definitions to balance understandability and 

accuracy. As a result, our streamlined definitions may not capture some nuances or specific 

types of neighborhood change: absorbing new population without displacement in areas of 

high vacancy, price pressures due to a decrease in real income while rents stay static, nuances 

in how renters and owners may experience price pressures differently, and significant relative 

changes on a local level that were not captured when compared to other tracts in the county. 

Further analysis could explore other types of neighborhood change or seek to further 

incorporate these or other dimensions of change. 

 Several of our input data sources have significant missingness. The LODES data is missing for 

several state-year combinations provided in the table above. The HMDA data had about 20% 

of tracts missing for 2022. And the HUD Administrative data was missing for multiple quarters 

of 2022 (March, June, and September) and 2023 (March and December).   We addressed that 

missingness using thoughtful imputation approaches as described above. However, this 

undoubtedly loses precision compared to the true data. Future work could explore options to 

fill in missing data or incorporate alternate data sources. 

 With additional years of data, we could include data on previous year’s neighborhood change 

classifications and the component conditions that have to be met for a tract to be identified as 

experiencing each type of change during the time-series cross validation. For example, if 

predicting 2022 change in 2021, we could include data on the neighborhood change 

classifications as of 2020, the most recent ACS data available at the time of publication. We 

did not have sufficient years of historical prepared data to make this possible for cross-

validation as of this initial analysis. We were able to add these variables when fitting the best 
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model on the most recent input data. It is possible that adding these variables during cross-

validation could result in selecting a set of specifications that improves model performance. 

 We faced several limitations as it relates to rural neighborhoods. First, we selected a definition 

of urban and rural areas that is commonly used in policy decisionmaking, but we could have 

used several other definitions of rural that might have rendered different predictions. We 

were unable to treat tribal areas, most of which are in or near rural areas, differently in our 

predictions even though our indicators may not work well in those areas. We consulted with 

experts in tribal areas, and determined that the indicators of neighborhood change are 

nuanced and complex, depending on a mix of state agreements, casino land and local 

organizing bodies, changing tribal designations, and how some local services may not be 

permitted to operate within reservations. While we were able to add some indicators of 

neighborhood change that we know are common in rural areas, they were limited, and did not 

include factors suggested by our advisors and the literature, like a change in the number of 

churches, healthcare facilities, charter schools, and more due to project limitations and/or 

limitations in nation-wide tract-level sources. Future work should take a deeper exploration 

into sensitivities with different rural definitions, neighborhood change in tribal areas or areas 

with large populations of American Indians, and whether better capturing changes in 

community institutions can offer more accurate predictions of neighborhood change in more 

rural areas.     

 Given the nation-wide scope of this project, we could not incorporate many useful state or 

local data sources that do not have national coverage. Data sources suggested by our project 

advisors include building permits, AirBnB data, crime statistics, community amenities, etc. We 

would encourage locally-focused users of the data to supplement the neighborhood change 

predictions with some of these useful sources for measuring neighborhood change. 

 We had limited time to test different permutations of features, models, and parameters to 

identify the best model. The results present our best models thus far, but we envision that 

with additional time the modeling results could be improved – potentially significantly so. 

Future research could test dividing the tracts into other subgroups for modeling, testing other 

model types and hyperparameters, adding additional data sources and features, testing 

different features for different subgroups, testing different feature selection approaches – 

and more- to improve the model results. 

 Further research could also explore other measures of model fairness by subgroup. Other 

dimensions could include the median income of the tract and the housing composition of the 

https://www.ers.usda.gov/topics/rural-economy-population/rural-classifications/what-is-rural/
https://www.urban.org/sites/default/files/publication/100135/guide_to_measuring_neighborhood_change_to_understand_and_prevent_displacement.pdf


tract (e.g. predominantly single-family homes, mixed single and multi-family, predominantly 

multi-family homes). 

Next Steps 
Following the submission of the final spatial dataset, we encourage HUD to consider ways to better 

contextualize the data, including having a user guide and/or overlaying additional data sources in 

HUD’s tool. 

User Guide 

We encourage HUD to consider developing a user guide. While having predictions of neighborhood 

change is powerful, the predictions have some limitations, and as they are based on nationwide data, 

the predictions are inevitably less sensitive to locally specific context and nuance. The user guide 

would articulate the importance of using these predictions as the start of a conversation.   The 

predictions should trigger a set of additional questions, both exploring the accuracy of these 

predictions as well as ideas for next steps. Below is a list of topics to cover in a possible user guide: 

 Ideas for community leaders and organizations users might consider reaching out to for 

deeper discussions, such as a local NNIP partner, or other local partners, such as Data Driven 

Detroit. 

 Intervention and policy ideas relating to various aspects of community that can mitigate the 

potentially harmful impacts of neighborhood change. Having several ideas will allow users to 

explore options and determine which mitigating activities might resonate best given the local 

conditions and circumstances. Topics relevant to consider in the context of neighborhood 

change include: affordable housing, housing stability, economic inclusion, racial diversity, 

social capital, transportation access, effective public education, school economic diversity, 

preparation for college, employment opportunities, jobs paying a living wage, opportunities 

for income, financial security, wealth-building opportunities, environmental quality, safety 

from trauma, and more. And example of a list of ideas to address affordable housing includes: 

» Increasing the overall housing supply, including by reforming zoning and land-use policies, 

streamlining permitting processes, and creating incentives for developers to build new 

housing   

https://catalog.results4america.org/strategies/overall-housing-supply
https://localhousingsolutions.org/housing-policy-library/zoning-changes-to-allow-for-higher-residential-density/
https://localhousingsolutions.org/housing-policy-library/streamlined-permitting-processes/
https://localhousingsolutions.org/housing-policy-library/tax-incentives-for-new-construction-and-substantial-rehabilitation/
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» Creating more dedicated affordable housing, including by subsidizing affordable housing 

development, establishing incentives for developers to create affordable units, and 

exploring ways to build affordable housing on publicly owned land   

» Preserving subsidized and unsubsidized affordable housing    

» Supporting permanently affordable housing models, such as community land trusts 

» Creating affordable homeownership opportunities, such as by providing downpayment or 

closing-cost assistance and expanding access to financing, including through the use of 

subsidized or shared appreciation mortgages 

These ideas for affordable housing initiatives and policies were pulled from websites, including 

Results for America and Local Housing Solutions. The user guide could link to these and other 

websites, such as the Upward Mobility Initiative and Opportunity Insights’ Opportunity Atlas, 

for users to explore several evidence-based strategies and case studies that offer more ideas 

on equitable approaches to neighborhood change and further inform local discussions and 

ideas communities could consider based on the neighborhood change predictions.   

 A list of literature that users could explore. This list can include examples of equitable and 

inclusive neighborhood change, such as DC’s 11th Street Bridge Park Project (Bogel et al. 

2016). It could also reference reports that center on   frameworks for sustainable, inclusive, 

and equitable change (Mallach 2008; Greene and Pettit 2016). And it could also share 

literature on how to avoid negative change, such as preventing displacement in the face of 

change (Cohen and Pettit 2019).    

This user guide could be a PDF attachment that is stored in or linked to via HUD’s tool (such as in the 

AFFH Tool). Rather than a PDF, the user guide could be in a more interactive html format. A future 

development of HUD’s online tool could use variables in the machine learning model to trigger an 

output of a suggestion for users to explore one or more topics in a list of compiled local policies and 

programs designed to spark ideas to mitigate the possible risks that can accompany change, ensuring 

more equitable, inclusive, and prosperous change. A motivation to integrate this more deeply into the 

tool is to address the lower visibility of an attached PDF compared to a more integrated format.   

Overlaying Additional Data 

Another approach to contextualize the data includes incorporating more data to overlay within HUD’s 

online tool. The types of data that could be most appropriate for overlay include data on climate 

change, such as FEMA’s social vulnerability index and community resilience index, data on 

https://catalog.results4america.org/strategies/affordable-housing
https://localhousingsolutions.org/housing-policy-library/capital-subsidies-for-building-affordable-housing-developments/
https://localhousingsolutions.org/housing-policy-library/density-bonuses/
https://localhousingsolutions.org/housing-policy-library/use-of-publicly-owned-property-for-affordable-housing/
https://localhousingsolutions.org/policy-objectives/preserving-market-affordable-rental-housing/
https://localhousingsolutions.org/housing-policy-library/community-land-trusts/
https://localhousingsolutions.org/housing-policy-library/downpayment-and-closing-cost-assistance/
https://localhousingsolutions.org/housing-policy-library/downpayment-and-closing-cost-assistance/
https://localhousingsolutions.org/housing-policy-library/subsidized-home-mortgages/
https://localhousingsolutions.org/housing-policy-library/shared-appreciation-mortgages/
https://catalog.results4america.org/strategies
https://localhousingsolutions.org/housing-policy-library/
https://upward-mobility.urban.org/
https://www.opportunityatlas.org/
https://www.urban.org/research/publication/equitable-development-planning-and-urban-park-space-early-insights-dcs-11th-street-bridge-park-project
https://shelterforce.org/wp-content/uploads/2008/05/ManagingNeighborhoodChange.pdf
https://www.urban.org/sites/default/files/2022-08/2000807-what-if-cities-used-data-to-drive-inclusive-neighborhood-change.pdf
https://www.urban.org/sites/default/files/publication/100135/guide_to_measuring_neighborhood_change_to_understand_and_prevent_displacement.pdf
https://egis.hud.gov/affht/
https://hazards.fema.gov/nri/social-vulnerability
https://hazards.fema.gov/nri/community-resilience


transportation, and other data on community assets.   For example, one dataset on community assets 

to overlay could be the Reenvisioning Rural America data that highlights asset clusters that 

correspond to the over 13,000 rural census tracts. These neighborhood descriptions offer a deeper 

context around neighborhood assets and can add to the conversation for neighborhoods identified for 

change. Not only will it add more context that can inform opportunities for locally appropriate 

mitigating interventions to ensure equity, inclusivity, and prosperity for communities. The tool can 

incorporate these data on the mapping feature and highlight information on tracts that identify which 

of the 7 asset clusters that neighborhood falls into. The asset clusters were determined by a 

combination of approximately 50 asset characteristics, and the seven asset clusters are: The asset 

clusters were determined by a combination of approximately 50 asset characteristics, and the seven 

asset clusters are: 

 Accessible, Energy-Rich Hubs 

 High-Employment Agricultural Areas 

 Centers of Wealth and Health 

 Diverse, Institution-Rich Hubs 

 Remote, Energy-Rich Tracts 

 Diverse, Outlying Tracts 

 Remote Recreational and Cultural Areas 

Making Predictions on New Years of Data 

We recommend generating new predictions when the new 5-year ACS survey is released. At the time 

of submission, the most recent ACS 2018-2022 5-year data was released in December 2023. 

Therefore, our latest prediction was “as-of” 2023 and use the latest years of our input data sources 

that are available at that time. Since our final model uses a one-year prediction window, the latest year 

we can predict neighborhood change is one year ahead of our “as-of” date, or 2024. When the 2019-

2023 5-year ACS data is released (likely December 2024), we recommend producing updated 

predictions “as-of” 2024 of change to occur in 2025. 

Users of the code can choose to either generate new neighborhood change predictions using the best 

fitted model from our model training as described above, or they can re-train the model using the new 

data. Re-using the pre-trained model is more expedient and allows for more direct comparison of 

https://reenvisioning-rural-america.urban.org/
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neighborhood change predictions over time. However, re-training the model with the new data may 

be more accurate, especially if a significant change in circumstances may result in the previously 

trained model being less predictive of future neighborhood change. Such changes in circumstances 

can include policy changes, data measurement changes, or significant shocks, like another pandemic. It 

is up to the analyst’s discretion to determine the best course of action given the circumstances and 

constraints. The code documentation provides detail on how to generate new predictions via both 

approaches.   

Appendix A: Missing Observations by Variable 
See file missing_obs_by_var.csv included with the submission of the Final Input Dataset for the 

percentage of observations that are missing by raw variable included in the Final Input Dataset. The 

missingness also applies to all of the features derived from those variables. The denominator for 

calculating the percentage of missing observations is all 2020 census tracts across the years 2013 to 

2022. In some cases, missingness is the result of differences in year coverage across our datasets. In 

other cases, there are known issues of missingness in specific geographies and years, such as the 

LODES data discussed above. 

Appendix B: Publication Lag by Input Data Source 
Data Source Earliest Year Available Latest Year Available Publication Lag (Years) 
ACS 5-Year 2013 2022 1 
HUD USPS 2008 2023 0 
HUD Administrative 2008 2023 0 
HMDA 2013 2022 1 
FEMA 2009 2022 1 
LODES 2011 2021 2 
IMLS PLS 2012 2022 1 
HUD CHAS 2011 2020 3 
National Register of 
Historic Places 

2014 2022 1 

This table reflects data availability as of December 2023. The HUD Administrative data is missing data 

for some quarters of 2022 and 2023. We take the averages of the non-missing quarters of data to 

produce the 2022 and 2023 estimates. 



Appendix C: Feature List 
See file features_used_by_subgroup.csv for the full list of features used in the rural and urban 

subgroup models after applying the feature engineering steps above. A feature would likely appear in 

one subgroup and not the other because of differences in variance, correlation with other predictors, 

or missingness across subgroups.   

Appendix D: Model Results 
Note that these results apply the default probability threshold of .5 for predicting that an observation 

would experience a given type of change. As discussed above, we recommend that users of these 

models test different probability thresholds to identify the ideal cutoff that balances precision and 

recall. 

Results for Best Urban Models of Each Type: 

Model Type Specification Accuracy Precision Recall ROC AUC 

Decision Tree Tree Depth: 15, Minimum N: 2 0.65 0.36 0.40 0.66 

Random Forest Number of Trees: 25, Minimum N: 4 0.91 0.50 0.29 0.74 

Boosted Trees Number of Trees: 50, Learning 

Rate: 0.1, Loss Reduction: 31.6 

0.75 0.32 0.44 0.77 

Multinomial 

Regression 

Penalty: 1 0.57 0.29 0.40 0.69 

Note: We did not train a nearest neighbors model for the urban subgroup as the relative computational 
inefficiency of that model on large datasets made it computationally infeasible to run on our urban subgroup 
within the scope of this project. Future analysis may try to train this model with greater computing power that 
allows for greater parallelization.   

Results for Best Rural Models of Each Type: 

Model Type Specification Accuracy Precision Recall ROC AUC 

Decision Tree Tree Depth: 15, Minimum N: 2 0.83 0.43 0.42 0.61 

Random Forest Number of Trees: 25, Minimum N: 4 0.94 0.57 0.35 0.69 
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Boosted Trees Number of Trees: 25, Learning 

Rate: 0.00000316, Loss Reduction: 

31.6 

0.79 0.36 0.42 0.62 

K-Nearest 

Neighbors 

Neighbors: 10 0.86 0.43 0.51 0.66 

Multinomial 

Regression 

Penalty: 0.0000000001 0.67 0.36 0.47 0.66 
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